Reprogramming offers the possibility to study cell fate acquisitions otherwise difficult to address in vivo. By monitoring the dynamics of gene expression during direct reprogramming of astrocytes into different neuronal subtypes via the activation of Neurog2 and Ascl1, we demonstrate that these proneural factors control largely different neurogenic programs. Among the cascades induced, however, we identified a common subset of transcription factors required for both Neurog2- and Ascl1-induced reprogramming, and combinations of these factors comprising NeuroD4 were sufficient to generate functional neurons. Notably, during astrocyte maturation REST prevents Neurog2 from binding to the NeuroD4 locus that becomes then enriched with histone H4 lysine 20 tri-methylation.
Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes.
Sex, Specimen part, Treatment, Time
View SamplesThe nuclear exosome performs critical functions in non-coding RNA processing, and in diverse surveillance functions including the quality control of mRNP formation, and in the removal of pervasive transcripts. Most non-coding RNAs and pervasive nascent transcripts are targeted by the Nrd1p-Nab3p-Sen1p (NNS) complex to terminate Pol II transcription coupled to nuclear exosome degradation or 3´-end trimming. Prior to nuclear exosome activity, the Trf4p-Air2p-Mtr4p polyadenylation complex adds an oligo-A tail to exosome substrates. Inactivating exosome activity stabilizes and lengthens these A-tails. We utilized high-throughput 3´-end poly(A)+ sequencing to identify at nucleotide resolution the 3´ ends targeted by the nuclear exosome, and determine the sites of NNS-dependent termination genome-wide. Overall design: 3´-end mapping of wild-type and various nuclear exosome mutant strains, either using gene knockouts or the anchor away system to conditionally deplete FRB-tagged proteins from the nucleus
Common genomic elements promote transcriptional and DNA replication roadblocks.
Subject
View SamplesWe report the effects of Rapamycin treatment on the transcriptome of normal human dermal fibroblasts isolated from foreskin (designated 2DD). We sequenced mRNA from 2 replicates of proliferative (PRO) quiescent (QUI, serum starved) or treated with 500nM Rapamycin for 5 days (RAP). Comparative analyses with PRO transcripts a baseline indicate that genes that changed expression from Rapamycin treated fibroblasts are significantly different from those of quiescence cells. Rapamycin treated cells showed a significant enrichment for cytokines from the Il-6 cascade. Overall design: Examination of mRNAs from proliferative, quiescent (serum starvation) and Rapamycin (5oonM, 5days) treated 2DD normal human dermal/foreskin fibroblasts.
Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts.
No sample metadata fields
View SamplesInner ear auditory and vestibular tissues differ in their responses to mechanical stimuli.
Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity.
Specimen part
View SamplesDevelopment requires the cooperation of tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1deltaDBD/deltaDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is severely compromised. Here we studied the cooperation of Sp1 and its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1deltaDBD/deltaDBD but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin bi nding of Sp1 is required to maintain robust differentiation trajectories. Overall design: RNA-Seq in ESC, Flk, HE1, HE2 and progenitor cells with WT, Sp1deltaDBD or Sp3KO
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.
Specimen part, Cell line, Subject
View SamplesFN044, FN211, FN242 and FN303 are the fast neutron generated mutants in cv. Steptoe background. These 4 mutants have lesion mimic phenotype and increase disease resistance to stem rust. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, ling zhang. The equivalent experiment is BB54 at PLEXdb.]
A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust.
Specimen part
View SamplesDevelopment requires the cooperation of tissue-specifically and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1DDBD/DDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is blocked. Here we studied the cooperation of Sp1 and its homologue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1DDBD/DDBD cells but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin binding of Sp1 is required to maintain robust differentiation trajectories. Overall design: Chromium 10X - Single-cell RNA-seq of Sp1 wild-type and Sp1 DNA binding domain mutant cells
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.
Specimen part, Subject
View SamplesThe incidence and mortality rates of prostate cancer are significantly higher in African-American men when compared to European-American men. We tested the hypothesis that differences in tumor biology contribute to this survival health disparity. Using microarray technology, we obtained gene expression profiles of primary prostate tumors resected from 33 African-American and 36 European-American patients. These tumors were matched on clinical parameters. We also evaluated 18 non-tumor prostate tissues from 7 African-American and 11 European-American patients. The resulting datasets were analyzed for expression differences on the gene and pathway level comparing African-American with European-American patients. Our analysis revealed a significant number of genes, e.g., 162 transcripts at a false-discovery rate less than 5%, to be differently expressed between African-American and European-American patients. Using a disease association analysis, we identified a common relationship of these transcripts with autoimmunity and inflammation. These findings were corroborated on the pathway level with numerous differently expressed genes clustering in immune response, stress response, cytokine signaling, and chemotaxis pathways. Furthermore, a two-gene tumor signature was identified that accurately differentiated between African-American and European-American patients. This finding was confirmed in a blinded analysis of a second sample set. In conclusion, the gene expression profiles of prostate tumors indicate prominent differences in tumor immunobiology between African-American and European-American men. The profiles portray the existence of a distinct tumor microenvironment in these two patient groups.
Tumor immunobiological differences in prostate cancer between African-American and European-American men.
Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA Methylation Changes in Lung Immune Cells Are Associated with Granulomatous Lung Disease.
Sex, Age, Treatment, Race
View SamplesThe goal of this study was to investigate and correlate differential methylation and expression in cells from the target organ in non-infectious granulomatous lung diseases, specifically sarcoidosis and chronic beryllium disease (CBD). To that end, cells were collected from patients via bronchoalveolar lavage (BAL), and extracted nucleic acids were hybridized to genome-wide arrays.
DNA Methylation Changes in Lung Immune Cells Are Associated with Granulomatous Lung Disease.
Sex, Age, Treatment, Race
View Samples