refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon GSE66052
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66050
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally [sperm]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

A fathers lifetime experiences can be transmitted to his offspring to affect

Publication Title

Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83632
Whole-transcript expression data from normal and DLBCL human peripheral blood samples
  • organism-icon Homo sapiens
  • sample-icon 163 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Gene expression profiling based classification of DLBCL patients versus healthy donors provides insights on transcriptional regulation processes.

Publication Title

T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP065040
A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA [single cell sequencing analysis]
  • organism-icon Homo sapiens
  • sample-icon 240 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Long non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: Cerebral organoids were generated as in Lancaster et al. (Lancaster and Knoblich, 2014). Organoids were dissociated into single cells and captured on C1 Single-Cell Auto Prep Integrated Fluidic Circuit (IFC) (Fluidigm). The RNA extraction and amplification was performed on the chip as described by the manufacturer. We captured 68 single-cells on a C1 Single-Cell Auto Prep System (Fluidigm) and sequenced the RNA on a NextSeq500 System (Illumina) (Pollen et al., 2014). Out of 68 cells, we obtained 60 high quality cells.

Publication Title

A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP064761
A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA [SHSY5Y cells]
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Long non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: SHSY5Y cells treated either with miR-143-3p mimic or 100 nM of siRNA specific for LncND were sequenced on NextSeq500 platform. Scrambled siRNA or miRNA sequences were used as a negative control.

Publication Title

A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059624
Primary cilium-autophagy-Nrf2 (PAN) axis links the cell cycle to neuroectoderm fate in human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

Under defined differentiation conditions human embryonic stem cells (hESCs) can be directed toward a mesendodermal (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with G1 lengthening a divergent ciliation pattern emerged within the first 24 hours of induced lineage specification and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2. Nrf2 binds directly to upstream regions of the OCT4 and NANOG genes to promote their expression and represses NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events have been initiated do neural precursor markers get expressed at day 4. Thus we have identified a primary cilium-autophagy-Nrf2 (PAN) axis coupled to cell cycle progression that directs hESCs toward NE. Overall design: Transcriptome analysis of hESC-derived neuroectoderm and mesendoderm cells

Publication Title

Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37469
Minor clone provides a reservoir for relapse in multiple myeloma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

In this study we addressed subclonal evolutionary process after treatment and subsequent relapse in multiple myeloma (MM) in a cohort of 24 MM patients treated either with conventional chemotherapy or with the proteasome inhibitor, bortezomib. Because MM is a highly heterogeneous disease coupled with a large number of DNA copy number alterations (CNAs) and loss of heterozygosity (LOH), we focused our study on the secondary genetic events: 1q21 gain, NF-kB activating mutations, RB1 and TP53 deletions, that seem to reflect progression. By using genome-wide high resolution SNP arrays we identified subclones with nonlinear complex evolutionary histories in a third of patients with myeloma, the relapse clone apparently derived from a minor subclone at diagnosis. Such reordering of the spectrum of genetic lesions during therapy is likely to reflect selection of genetically distinct subclones not initially competitive against the dominant population that survived chemotherapy, thrived and acquired new anomalies. In addition we found that emergence of minor subclones at relapse was significantly associated with bortezomib treatment. Altogether, these data support the idea of new strategy of future clinical trials in MM that would combine targeted therapy and subpopulations control to eradicate all myeloma subclones in order to obtain long-term remission.

Publication Title

Minor clone provides a reservoir for relapse in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE37414
Expression of genetic adaptability of cancer cells under treatment selection pressure in multiple myeloma patients
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Series GSE25262 patients on expression side.

Publication Title

Minor clone provides a reservoir for relapse in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE102016
Expression profile from mouse lung treated with B[a]P and LPS
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20 g/mouse) to induce pulmonary inflammation and subsequently exposed to B[a]P (0.5 mg/mouse) by intratracheal instillation

Publication Title

Altered gene expression profiles in the lungs of benzo[a]pyrene-exposed mice in the presence of lipopolysaccharide-induced pulmonary inflammation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11769
Analysis of ectopic human endometrium and peritoneal tissues in nude mice
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact