Prostate cancer is a common cause of cancer-related death in men. E6AP, an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo. However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumour suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approaches. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered upon knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo. Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP. Overall design: Examination of candidate targets regulated by E6AP at transcript level
Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells.
Cell line, Subject
View SamplesWe report RNA-sequencing data of 283 blood platelet samples, including 228 tumor-educated platelet (TEP) samples collected from patients with six different malignant tumors (non-small cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer and hepatobiliary carcinomas). In addition, we report RNA-sequencing data of blood platelets isolated from 55 healthy individuals. This dataset highlights the ability of TEP RNA-based ''liquid biopsies'' in patients with several types with cancer, including the ability for pan-cancer, multiclass cancer and companion diagnostics. Overall design: Blood platelets were isolated from whole blood in purple-cap BD Vacutainers containing EDTA anti-coagulant by standard centrifugation. Total RNA was extracted from the platelet pellet, subjected to cDNA synthesis and SMARTer amplification, fragmented by Covaris shearing, and prepared for sequencing using the Truseq Nano DNA Sample Preparation Kit. Subsequently, pooled sample libraries were sequenced on the Illumina Hiseq 2500 platform. All steps were quality-controlled using Bioanalyzer 2100 with RNA 6000 Picochip, DNA 7500 and DNA High Sensitivity chips measurements. For further downstream analyses, reads were quality-controlled using Trimmomatic, mapped to the human reference genome using STAR, and intron-spanning reads were summarized using HTseq. The processed data includes 285 samples (columns) and 57736 ensemble gene ids (rows). The supplementary data file (TEP_data_matrix.txt) contains the intron-spanning read counts, after data summarization by HTseq.
RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics.
No sample metadata fields
View SamplesThe traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers.
Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver.
Sex, Treatment
View SamplesThe process of liver regeneration can be divided into a series of stages that include initial inductive or priming events through cellular mitosis. Following two-thirds liver resection, the liver undergoes the priming phase, in which cytokines TNF-a and IL-6 activate their respective receptors in hepatocytes. This leads to the activation of several key transcription factors: NF-kB, AP-1, Stat 3, Stat 1, and C/EBP-b and -d . These transcription factors induce the expression of immediate early genes. HGF is also expressed at this time and involved in the transition of quiescent hepatocytes into the G1 phase of the cell cycle. During the G1 phase, delayed early genes are expressed followed by induction of cell cyclerelated genes, both of which require new protein synthesis for their production. Increased expression of FoxM1B and TGF-a occurs at the G1/S transition and is correlated with increased expression of cyclinD1 and decreased expression of cdk inhibitors. During the G2/M phase of the cell cycle, FoxM1B directly elevates cyclinB1, cyclinB2, and cdc25B expression. Additionally, FoxM1B is associated with increased cyclinF and p55cdc, which are involved in completion of the cell cycle following partial hepatectomy. In mice, two-thirds partial hepatectomy promotes proliferation of liver cells and rapid growth of the remaining liver tissue, resulting in complete restoration of organ mass in approximately 7 days (Mackey S. et al. Hepatology 2003 Dec;38(6):1349-52).
Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver.
Sex, Treatment
View SamplesThe process of liver regeneration can be divided into a series of stages that include initial inductive or priming events through cellular mitosis. Following two-thirds liver resection, the liver undergoes the priming phase, in which cytokines TNF-a and IL-6 activate their respective receptors in hepatocytes. This leads to the activation of several key transcription factors: NF-kB, AP-1, Stat 3, Stat 1, and C/EBP-b and -d . These transcription factors induce the expression of immediate early genes. HGF is also expressed at this time and involved in the transition of quiescent hepatocytes into the G1 phase of the cell cycle. During the G1 phase, delayed early genes are expressed followed by induction of cell cyclerelated genes, both of which require new protein synthesis for their production. Increased expression of FoxM1B and TGF-a occurs at the G1/S transition and is correlated with increased expression of cyclinD1 and decreased expression of cdk inhibitors. During the G2/M phase of the cell cycle, FoxM1B directly elevates cyclinB1, cyclinB2, and cdc25B expression. Additionally, FoxM1B is associated with increased cyclinF and p55cdc, which are involved in completion of the cell cycle following partial hepatectomy. In mice, two-thirds partial hepatectomy promotes proliferation of liver cells and rapid growth of the remaining liver tissue, resulting in complete restoration of organ mass in approximately 7 days (Mackey S. et al. Hepatology 2003 Dec;38(6):1349-52).
Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver.
Sex, Treatment
View SamplesAge-related defects in stem cells can limit proper tissue maintenance and hence contribute to a shortened life-span. Using highly purified hematopoietic stem cells from mice aged 2 to 21 months, we demonstrate a deficit in function yet an increase in stem cell number with advancing age. Expression analysis of more than 14,000 genes identified 1500 that were age-induced and 1600 that were age-repressed. Genes associated with the stress response, inflammation, and protein aggregation dominated the upregulated expression profile, while the downregulated profile was marked by genes involved in the preservation of genomic integrity and chromatin remodeling. Many chromosomal regions showed coordinate loss of transcriptional regulation, and an overall increase in transcriptional activity with aged, and inappropriate expression genes normally regulated by epigenetic mechanisms was observed. Hematopoietic stem cells from early-aging mice expressing a mutant p53 allele reveal that aging of stem cells can be uncoupled from aging at an organismal level. These studies show that HSC are not protected from aging. Instead, loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of aging, including the increased propensity for neoplastic transformation.
Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation.
No sample metadata fields
View SamplesdMyc is a conserved transcription factor that controls growth and proliferation by regulating its target genes.
MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila.
Specimen part
View SamplesMyelin-reactive T cells have been identified in patients with multiple sclerosis (MS) and healthy subjects with comparable frequencies, but the contribution of these autoreactive T cells to disease pathology remains unknown. A total of 13,324 T cell libraries generated from blood of 23 patients and 22 healthy controls were interrogated for reactivity to myelin antigens. Libraries derived from CCR6+ myelin-reactive T cells from patients with MS exhibited significantly enhanced production of IFN-?, IL-17, and GM-CSF compared to healthy controls. Single-cell clones isolated by MHC/peptide tetramers from CCR6+ T cell libraries also secreted more pro-inflammatory cytokines while clones isolated from controls secreted more IL-10. The transcriptomes of myelin-specific CCR6+ T cells from patients with MS were distinct from those derived from healthy controls, and of note, were enriched in Th17-induced experimental autoimmune encephalitis (EAE) gene signatures and gene signatures derived from Th17 cells isolated other human autoimmune diseases. These data, although not casual, imply that functional differences between antigen specific T cells from MS and healthy controls is fundamental to disease development and support the notion that IL-10 production from myelin-reactive T cells may act to limit disease progression, or even pathogenesis. Overall design: Four conditions of purified T cells with between 3 and 5 replicates per condition
Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis.
No sample metadata fields
View SamplesHSC (Sca+ SP) were isolated from 8-12 week C57B6 mice at various time points after treatment with 5-Fluorouracil. RNA was isolated from 50,000-100,000 FACS sorted cells and subjected to two rounds of T7 based linear amplification using Ambion's Message Amp kit. Two replicates from each time point were analyzed.
Molecular signatures of proliferation and quiescence in hematopoietic stem cells.
No sample metadata fields
View Samples