The directed differentiation of induced pluripotent stem (iPS) and embryonic stem (ES) cells into definitive endoderm (DE) would allow the derivation of otherwise inaccessible progenitors for endodermal tissues. However, a global comparison of the relative equivalency of DE derived from iPS and ES populations has not been performed. Recent reports of molecular differences between iPS and ES cells have raised uncertainty as to whether iPS cells could generate autologous endodermal lineages in vitro. Here, we have shown that both mouse iPS and parental ES cells exhibited highly similar in vitro capacity to undergo directed differentiation into DE progenitors. With few exceptions, both cell types displayed similar surges in gene expression of specific master transcriptional regulators and global transcriptomes that define the developmental milestones of DE differentiation. Microarray analysis showed considerable overlap between the genetic programs of DE derived from ES/iPS cells in vitro and authentic DE from mouse embryos in vivo. Intriguingly, iPS cells exhibited aberrant silencing of imprinted genes known to participate in endoderm differentiation, yet retained a robust ability to differentiate into DE. Our results show that, despite some molecular differences, iPS cells can be efficiently differentiated into DE precursors, reinforcing their potential for development of cell-based therapies for diseased endodermal-derived tissues.
Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes.
Specimen part
View SamplesThe recent identification of novel progenitor populations that contribute to the developing heart in a distinct temporal and spatial manner has fundamentally improved our understanding of cardiac development. However, little remains known about cardiac specification events prior to the establishment of the heart tube, or the mechanisms that direct atrial versus ventricular specification. We have identified a novel progenitor population that gives rise specifically to cardiovascular cells of the ventricles but not the atria, and to the epicardium of the differentiated heart. We determined that this cell population is first specified during gastrulation, when it transiently expresses Foxa2, a gene not previously implicated in cardiac development. Using chimeric mosaic analysis we further demonstrate that Foxa2 is cell-autonomously required for the development of ventricular cells. Finally, we reveal the existence of an analogous Foxa2+ cardiac mesoderm population during in vitro differentiation from embryonic stem cells and illustrate that these cells express genes relevant for heart development. Our data thus describe the first progenitor population identified as early as gastrulation that displays ventricular-specific differentiation potential. Together, these findings provide important new insights into the developmental origin of ventricular and atrial myocytes, and will lead to the establishment of new strategies for generating these cell types from pluripotent stem cells. Overall design: Examination of global gene expression in four different cell types
Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential.
Specimen part, Subject
View SamplesGlucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.
Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.
Age
View SamplesThis data provides evidence that elevation of cAMP levels has a dramatic effect on the transcriptome of yeast cells, with particular emphasis on mitochondrial function and the promotion of ROS production
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.
Treatment
View SamplesTranscriptome analysis of peritoneal lavage of mice infected with T. gondii
Differential gene expression in mice infected with distinct Toxoplasma strains.
Sex, Specimen part
View SamplesInnate sensing of viruses by dendritic cells (DCs) is critical for the initiation of anti-viral adaptive immune responses. Virus, however, have evolved to suppress immune activation in infected cells. We now analyze the susceptibility of different populations of dendritic cells to viral infections. We find that circulating human CD1c+ DCs support infection by HIV and influenza virus. Viral infection of CD1c+ DCs is essential for virus-specific CD8+ T cell activation and cytosolic sensing of the virus. In contrast, circulating human CD141+ DCs and pDCs constitutively limit viral fusion. The small GTPase RAB15 mediates this differential viral resistance in DC subsets through selective expression in CD141+ DCs and pDCs. Therefore, dendritic cell sub-populations evolved constitutive resistance mechanisms to mitigate viral infection during induction of antiviral immune response. Overall design: Examination of transcriptional profiles in 4 DC subsets purified from 3 donors using RNASeq
Constitutive resistance to viral infection in human CD141<sup>+</sup> dendritic cells.
No sample metadata fields
View SamplesInterleukin (IL)-17 plays an important and protective role in host defence and has been demonstrated to orchestrate airway inflammation by cooperating with and inducing proinflammatory cytokines. Mircoarrays were used to identify immediate-early/ primary response IL-17A-dependent gene transcripts in primary human bronchial ASM cells from mild asthmatic and healthy individuals.
IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.
Sex, Age, Specimen part, Treatment, Subject, Time
View SamplesGhrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including metabolism, cardiovascular health, stress and reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterise how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We have combined ovarian transcriptome analysis using RNA sequencing with measures of ovarian morphometry, as well as with the assessment of markers of reproductive maturity and the capacity to breed. Our data show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of advanced ovarian development. These changes corresponded with diminished ovarian reserve in the juvenile and adult ovaries of these mice, due to a continuous reduction in the number of small follicle populations. These changes did not affect the timing of puberty onset or reproductive capacity under optimal conditions. These data suggest that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation. Overall design: 4 WT and 4 GOAT KO ovaries were used for this analysis
Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility.
Age, Specimen part, Cell line, Subject
View SamplesRat mammary glands were obtained from individual rats in RXR treated (a) and control (b) conditions (12 rats in each condition). The 24 samples were hybridized individually. Also, in each condition, samples were combined into different pools of 2, pools of 3, pools of 12. Technical replicates were also run.
On the utility of pooling biological samples in microarray experiments.
No sample metadata fields
View SamplesPEST-domain-enriched tyrosine phosphatase (PEP) is a cytoplasmic protein tyrosine phosphatase that regulates immune cell functions, including mast cell functions. Using bone marrow derived mast cells (BMMCs) from PEP+/+ and PEP-/- mice, RNA-seq data showed that dinitrophenol (DNP) - activated PEP-/- BMMCs have misregulated gene expression, with some cytokine/chemokine genes (eg.TNFa, IL13, CSF2) showing reduced gene expression in the dinitrophenol (DNP) - activated PEP-/- BMMCs compared to (DNP)-activated PEP+/+ BMMCs. Also, the ability of the glucocorticoid dexamethasone (Dex) to negatively regulate DNP - induced COX-2 gene expression in PEP-/- BMMCs was inhibited compared to the PEP+/+ BMMCs. Overall design: Biological replicates are sequenced and analyzed. The samples are either wild-type or mutant for PEP and cells were sensitized with Ig-E, activated with Dinitrophenol and glucocorticoid treatment done with Dexamethasone.
Transcriptomic data on the role of PEST-domain-enriched tyrosine phosphatase in the regulation of antigen-mediated activation and antiallergic action of glucocorticoids in mast cells.
Sex, Specimen part, Cell line, Treatment, Subject
View Samples