HM1, HP1a-/-, and HP1b-/- ESC transcriptomes were generated to determine whether depletion of these HP1 proteins influences gene and/or retroelement expression Overall design: mRNA profiles of HP1a and HP1b Knockouts and its corresponding wildtype
Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells.
Specimen part, Subject
View SamplesWhole blood expression was profiled in Rheumatoid Arthiritis and SLE (Systemic LUPUS Erythomatosus) patients.
Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis.
Specimen part, Disease, Time
View SamplesDNA methylation and histone H3 lysine 9 trimethylation (H3K9me3) play important roles in silencing of genes and retroelements. However, a comprehensive comparison of genes and repetitive elements repressed by these pathways has not been reported. Here we show that in mouse embryonic stem cells (mESCs), the genes up-regulated following deletion of the H3K9 methyltransferase Setdb1 are distinct from those de-repressed in mESC deficient in the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b, with the exception of a small number of primarily germline-specific genes. Numerous endogenous retroviruses (ERVs) lose H3K9me3 and are concomitantly de-repressed exclusively in SETDB1 knockout mESCs. Strikingly, ~15% of up-regulated genes are induced in association with de-repression of promoter proximal ERVs, half in the context of "chimaeric" transcripts that initiate within these retroelements and splice to genic exons. Thus, SETDB1 plays a previously unappreciated yet critical role in inhibiting aberrant gene transcription by suppressing the expression of proximal ERVs. Overall design: NChIP-seq and mRNA-seq of WT, SETDB1 KO and DMNT1 TKO mESCs
DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.
Specimen part, Treatment, Time
View SamplesDNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germline and may be mediated by Tet (ten-eleven-translocation) enzymes, which convert 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC). Tet enzymes have been extensively studied in mouse embryonic stem (ES) cells, which are generally cultured in the absence of Vitamin C, a potential co-factor for Fe(II) 2-oxoglutarate dioxygenase enzymes like Tets. Here we report that addition of Vitamin C to ES cells promotes Tet activity leading to a rapid and global increase in hmC. This is followed by DNA demethylation of numerous gene promoters and up-regulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site (TSS) of genes affected by Vitamin C treatment. Importantly, Vitamin C, but not other antioxidants, enhances the activity of recombinant human Tet1 in a biochemical assay and the Vitamin C-induced changes in hmC and mC are entirely suppressed in Tet1/2 double knockout (Tet DKO) ES cells. Vitamin C has the strongest effects on regions that gain methylation in cultured ES cells compared to blastocysts and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A-particle (IAP) elements, which are resistant to demethylation in the early embryo, are resistant to Vitamin C-induced DNA demethylation. Collectively, this study establishes that Vitamin C is a direct regulator of Tet activity and DNA methylation fidelity in ES cells.
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.
Specimen part
View SamplesTotal RNA microarray data from Fresh-Frozen Glioblastoma tumor samples.
Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.
Specimen part, Disease stage
View SamplesObesity is linked to the development of metabolic disorders. Expansion of white adipose tissue (WAT) from hypertrophy of pre-existing adipocytes and/or differentiation of precursors into new mature adipocytes contributes to obesity. We found that Nck2 expression is largely restricted to WAT, raising the hypothesis that it may play a unique function in that tissue. Using mice lacking Nck2, we found that Nck2 regulates adipocyte hypertrophy thus contributing to increased adiposity and progressive glucose intolerance, insulin resistance and hepatic steatosis. These findings were recapitulated in humans such that Nck2 expression in omental WAT was inversely correlated with the degree of obesity. Mechanistically, Nck2 deficiency promoted the induction of an adipocyte differentiation program and signaling by the PERK-eIF2a-ATF4 pathway in agreement with a role for the unfolded protein response in adipogenesis. These findings uncover Nck2 as a novel regulator of adipogenesis and that perturbation in its functionality contributes to adiposity-related metabolic disorders. Overall design: Differential gene expression profile between epididymal white adipose tissue of Nck2-/- and Nck2+/+ mice by RNA sequencing (Illumina HiSEq 2000)
Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis.
No sample metadata fields
View SamplesPurpose: Foxp2 is the first and for now the only gene connected to speech and language in humans. Two aminoacid substitutions took place in this protein during recent human evolution, after our split from the last common ancestor with chimpanzees, and are most likely to have undergone positive selection in human lineage (Enard et al., 2002). Methods: Transgenic mice in which the wild-type (murine) version of Foxp2 was replaced with the one bearing two human-specific amino acid substitutions (i.e. "humanized" Foxp2) - Foxp2hum/hum, have been compared to their wild-type (WT) counterparts in terms of behavior, electrophysiology and striatal gene expression. The latter was analyzed through RNA-sequencing performed on pooled indexed libraries on three flow cells on Illumina GAIIx. The reads were mapped to mouse genome (mm9) by TopHat 1.4.1 and were counted using Bedtools. mRNA profiles were obtained with more than 20 million reads for every sample. Differential gene expression was analyzed with DESeq using multifactor model (Anders and Huber, 2010). Results: Wild-type and Foxp2hum/hum mice did not show any significant differences in expression at individual gene level, neither in dorsomedial nor in dorsolateral striatum. However, when genes were grouped into functional categories and analyzed accordingly, this revealed a significant downregulation of functional categories related to synaptic signalling and plasticity in dorsomedial striatum of Foxp2hum/hum mice. Overall design: RNA-sequencing was performed on dorsomedial and dorsolateral striatum of wild-type and Foxp2hum/hum mice, on three flow cells Illumina GAIIx. The libraries from each sample were indexed and pooled together.
Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance.
No sample metadata fields
View SamplesMany tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRß signaling. By screening a secretome library, we found that the human immunoreceptor NKp44 encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of IFN-? and TNF-a that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell cycle genes correlated with NCR2 and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, whilst cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Overall design: RNAseq of NK cell and tumor cell samples in reponse to various stimuli
Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.
Specimen part, Cell line, Treatment, Subject
View SamplesGenetic ablation of the maintenance methyltransferase Dnmt1 induces widespread demethylation and transcriptional activation of CpG-rich IAP (intracisternal A particle) proviruses. Here, we report that this phenomenon is not simply a consequence of loss of DNA methylation. By exploiting conditional deletions of Dnmt1 and Np95, each of which is essential for maintenance methylation, we find that while IAPs are indeed de-repressed in Dnmt1-ablated embryos and embryonic stem cells (ESCs), these proviruses remain silenced in Np95-ablated cells, despite similar kinetics of passive demethylation. Paradoxically, transient IAP activation in Dnmt1-ablated ESCs requires the presence of NP95. We subsequently show that in the absence of NP95, the H3K9 methyltransferase SETDB1 maintains IAP silencing; while in the absence of DNMT1, prolonged binding of NP95 to hemimethylated DNA perturbs SETDB1-dependent H3K9me3 deposition. Taken together, these observations reveal that following acute loss of Dnmt1, H3K9 methylation-dependent IAP silencing is disrupted by aberrant NP95 binding to hemimethylated DNA. Overall design: RNA-seq for Np95, Dnmt1 and Setdb1 wt, single conditional KO (cKO) and double cKO ES cells; RRBS-seq for Dnmt1 and Np95 single and double cKO ESCs; Myc-tagged NP95, DNMT1 ChIP-seq; and wt and Np95wt and cKO H3K9me3 ChIP-seq.
Activation of Endogenous Retroviruses in Dnmt1(-/-) ESCs Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to Hemimethylated DNA.
Subject, Time
View Samples