refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 778 results
Sort by

Filters

Technology

Platform

accession-icon GSE134178
TNF deficiency causes changes in the spatial organization of neurogenic zones and the number of microglia and neurons in the cerebral cortex
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Background: Although TNF inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. TNF is known to modulate neurogenesis by decreasing cell proliferation, increasing apoptosis of precursor cells, and impairing neuronal differentiation. TNF can also influence the formation of the hippocampus, with long-lasting effects on cognition. Materials and methods: To clarify whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the brains of E13.5, P7, and adult TNF +/+ and TNF-/- mice and measured changes in gene and protein expression and monoamine levels in adult TNF+/+ and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, selective soluble TNF inhibitor XPro1595, or nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult TNF+/+ and TNF-/- mice and anti-TNF treated mice with behavioral tasks.

Publication Title

TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9037
response to LPS of WT and IRAK4 kinase dead mouse bone marrow macrophages
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Though regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. In order to investigate the role of IRAK-4 kinase function in vivo, knock-in mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase deficient IRAK-4 protein (IRAK-4 KD). Analysis of bone marrow macrophages obtained from WT and IRAK-4 KD mice with a number of experimental techniques demonstrated that the IRAK-4 KD cells greatly lack responsiveness to stimulation with the Toll-like receptor 4 (TLR4) agonist LPS. One of the techniques used, microarray analysis, identified IRAK-4 kinase-dependent LPS response genes and revealed that the induction of LPS-responsive mRNAs was largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in TLR4-mediated induction of inflammatory responses.

Publication Title

IRAK-4 kinase activity-dependent and -independent regulation of lipopolysaccharide-inducible genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6789
response to IL-1b of WT and IRAK4 kinase dead mouse embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Though regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. In order to investigate the role of IRAK-4 kinase function in vivo, knock-in mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase deficient IRAK-4 protein (IRAK-4 KD). Analysis of embryonic fibroblasts and macrophages obtained from IRAK-4 KD mice with a number of experimental techniques demonstrated that they greatly lack responsiveness to stimulation with IL-1b or a Toll-like receptor 7 (TLR7) agonist. One of the techniques used, microarray analysis, identified IRAK-4 kinase-dependent IL-1b response genes in mouse embryonic fibroblasts and revealed that the induction of IL-1b-responsive mRNAs was largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in IL-1R/TLR7-mediated induction of inflammatory responses.

Publication Title

IRAK-4 kinase activity is required for interleukin-1 (IL-1) receptor- and toll-like receptor 7-mediated signaling and gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12845
B cell subsets from human tonsil and blood
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

B cells from human tonsil and blood were sorted using flow cytometry. The human samples were processed immediately ex-vivo using markers for known B cell subsets.

Publication Title

Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12366
B cell subsets
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sorted B cells using flow cytometry

Publication Title

Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34799
Stem cell lines of the early mouse embryo
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Expression profiling of stem cell lines derived from the early embryo representing the trophoblast, primitive endoderm, early epiblast (inner cell mass E3.5) and late post-implantation epiblast (E5.5).

Publication Title

Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE29941
Microarray data from pre-germinated seeds and hypoxia-treated seedlings of Arabidopsis prt6-1 and ate1 ate2 mutants of the N-end rule pathway of targeted proteolysis pathway
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This study analyzes transcriptome profiles in pre-germinated seeds and hypoxia-treated seedlings of Arabidopsis thaliana wild type (Col-0) and homozygous mutants (prt6-1 and ate1 ate2). This dataset includes CEL files, RMA signal values and MAS5 P/M/A calls. For pre-germinated seeds, seeds imbibed for 24 h were used for total RNA extraction. For hypoxia treatment, 7-d-old seedlings were incubated in a hypoxia chamber for 2 h and the entire seedling was subjected to RNA extraction. Quantitative profiling of cellular mRNAs was accomplished with the Affymetrix ATH1 platform. Changes in the transcriptome during early seed germination stage and in response to hypoxia in seedlings were evaluated. The data led to identification of mRNAs with abundance regulated by PRT6 and ATE1 / ATE2, which are essential components for the N-end rule pathway of targeted proteolysis (NERP). A combination of genetic, biochemical and molecular analyses reveal that NERP coordinates the stability of key ethylene responsive factor (ERF) family transcription factors, which regulate expression of core hypoxia response genes and tolerance to low oxygen stress. This indicates that the NERP functions as a homeostatic sensor of low oxygen in plants.

Publication Title

Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE138016
A circular RNA from the MDM2 locus regulates proliferation by suppressing basal p53 levels
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Circular RNAs (circRNAs) are a class of noncoding RNAs produced by a non-canonical form of alternative splicing called back-splicing. To investigate a potential role of circRNAs in the p53 pathway, we analyzed RNA-seq data from colorectal cancer cell lines (HCT116, RKO and SW48) in the presence or absence of DNA damage. Surprisingly, unlike the strong p53-dependent induction of hundreds of p53-induced mRNAs, only a few circRNAs were induced from the p53-induced genes. Circ-MDM2, an annotated circRNA from the MDM2 locus, was one of the handful of circRNAs that originated from a p53-induced gene. Given the central role of MDM2 in suppressing p53 protein levels and p53 activity, we investigated the function of circ-MDM2. Knocking down circ-MDM2 with siRNAs that targeted the circ-MDM2 junction and had no effect on linear MDM2 mRNA, resulted in increased basal p53 levels and growth defects in vitro and in vivo. Consistent with these results, transcriptome profiling showed increased expression of several direct p53 targets, reduced Rb phosphorylation and defects in G1-S progression upon silencing circ-MDM2. Our results reveal the role of a novel circRNA by which the MDM2 locus suppresses p53 levels and cell cycle progression.

Publication Title

A Circular RNA from the <i>MDM2</i> Locus Controls Cell Cycle Progression by Suppressing p53 Levels.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE107039
Epigenetic and transcriptomic signature of aging in human liver
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE107037
Epigenetic and transcriptomic signature of aging in human liver [expression]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling of liver biopsies collected from 33 healthy liver donors ranging from 13 to 90 years old. The Affymetrix HG-U133 Plus 2.0 GeneChip platform was used to evaluate gene-expression.

Publication Title

Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact