Alternative promoters (APs) occur in >30% protein-coding genes and contribute to proteome diversity. However, large-scale analyses of AP regulation are lacking, and little is known about their potential physiopathologic significance. To better understand the transcriptomic impact of estrogens, which play a major role in breast cancer, we analyzed gene and AP regulation by estradiol in MCF7 cells using pan-genomic exon arrays. We thereby identified novel estrogen-regulated genes, and determined the regulation of AP-encoded transcripts in 150 regulated genes. In <30% cases, APs were regulated in a similar manner by estradiol, while in >70% cases, they were regulated differentially. The patterns of AP regulation correlated with the patterns of estrogen receptor (ER) and CCCTC-binding factor (CTCF) binding sites at regulated gene loci. Interestingly, among genes with differentially regulated APs, we identified cases where estradiol regulated APs in an opposite manner, sometimes without affecting global gene expression levels. This promoter switch was mediated by the DDX5/DDX17 family of ER coregulators. Finally, genes with differentially regulated promoters were preferentially involved in specific processes (e.g., cell structure and motility, and cell cycle). We show in particular that isoforms encoded by the NET1 gene APs, which are inversely regulated by estradiol, play distinct roles in cell adhesion and cell cycle regulation, and that their expression is differentially associated with prognosis in ER+ breast cancer. Altogether, this study identifies the patterns of AP regulation in estrogen-regulated genes, demonstrates the contribution of AP-encoded isoforms to the estradiol-regulated transcriptome, as well as their physiopathologic significance in breast cancer.
Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer.
Disease, Disease stage, Cell line, Time
View SamplesAlternative 3-terminal exons, which use intronic polyadenylation sites, are generally unconserved and lowly expressed, while the main gene products end in the last exon of genes. In this study, we discover a class of human genes, where the last exon appeared recently during evolution, and the major gene product uses an alternative 3-terminal exon corresponding to the ancestral last exon of the gene. This novel class of alternative 3-terminal exons are down-regulated on a large scale by doxorubicin, a cytostatic drug targeting topoisomerase II, and play a role in cell cycle regulation, including centromere-kinetochore assembly. The RNA-binding protein, HuR/ELAVL1 is a major regulator of this specific set of alternative 3-terminal exons. HuR binding to the alternative 3-terminal exon in the pre-messenger RNA promotes its splicing, and is reduced by topoisomerase inhibitors. These findings provide new insights into the evolution, function and molecular regulation of alternative 3-terminal exons.
A recently evolved class of alternative 3'-terminal exons involved in cell cycle regulation by topoisomerase inhibitors.
Cell line
View SamplesPre-mRNA splicing is functionally coupled to transcription, and genotoxic stresses can enhance alternative exon inclusion by affecting elongating RNA polymerase II. We report here that various genotoxic stress inducers, including camptothecin, inhibit the interaction between EWS, an RNA polymerase II-associated factor, and YB-1, a spliceosome-associated factor. This results in the cotranscriptional skipping of several exons of the MDM2 gene encoding the main p53 ubiquitin-ligase. This reversible exon skipping participates in the timely regulation of MDM2 expression, and may contribute to the accumulation of p53 during stress exposure and its rapid shut off when stress is removed. Finally, a splicing-sensitive microarray identified numerous exons that are skipped in response to camptothecin and EWS/YB-1 depletion. These data demonstrate genotoxic stress-induced alteration of the communication between the transcriptional and splicing machineries, resulting in widespread exon skipping and playing a central role in the genotoxic stress response.
Cotranscriptional exon skipping in the genotoxic stress response.
Specimen part, Cell line
View SamplesAltered expression of microRNAs (miRNAs), an abundant class of small non-protein-coding RNAs that mostly function as negative regulators of protein-coding gene expression, is common in cancer. Here we analyze the regulation of miRNA expression in response to estrogen, a steroid hormone that is involved in the development and progression of breast carcinomas and that is acting via the estrogen receptors (ER) transcription factors. We set out to thoroughly describe miRNA expression, by using miRNA microarrays and real time RTPCR experiments, in various breast tumor cell lines in which estrogen signaling has been induced by 17-estradiol (E2). We show that the expression of a broad set of miRNAs decreases following E2 treatment in an ER-dependent manner. We further show that enforced expression of several of the repressed miRNAs reduces E2-dependent cell growth, thus linking expression of specific miRNAs with estrogen-dependent cellular response. In addition, a transcriptome analysis revealed that the E2-repressed miR-26a and miR-181a regulate many genes associated with cell growth and proliferation, including the progesterone receptor gene, a key actor in estrogen signaling. Strikingly, miRNA expression is also regulated in breast cancers of women who had received antiestrogen neoadjuvant therapy thereby showing an estrogen-dependent in vivo regulation of miRNA expression. Overall, our data indicates that the extensive alterations in miRNA regulation upon estrogen signalling pathway plays a key role in estrogen-dependent functions and highlights the utility of considering miRNA expression in the understanding of antiestrogen resistance of breast cancer.
Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth.
Cell line
View SamplesRNA helicases DDX5 and DDX17 are members of a large family of highly conserved proteins involved in gene expression regulation, although their in vivo targets and activities in biological processes like cell differentiation, that requires reprogramming of gene expression programs at multiple levels, are not well characterized. In this report, we uncovered a new mechanism by which DDX5 and DDX17 cooperate with hnRNP H/F splicing factors to define epithelial- and myoblast-specific splicing subprograms. We next observed that downregulation of DDX5 and DDX17 protein expression during epithelial to mesenchymal transdifferentiation and during myogenesis contributes to switching splicing programs during these processes. Remarkably, this downregulation is mediated by the production of microRNAs induced upon differentiation in a DDX5/DDX17-dependent manner. Since DDX5 and DDX17 also function as coregulators of master transcriptional regulators of differentiation, we propose to name these proteins master orchestrators of differentiation, that dynamically orchestrate several layers of gene expression.
RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation.
Specimen part, Cell line
View SamplesQuiescent and dividing hemopoietic stem cells (HSC) display marked differences in their ability to move between the peripheral circulation and the bone marrow. Specifically, long-term engraftment potential predominantly resides in the quiescent HSC subfraction, and G-CSF mobilization results in the preferential accumulation of quiescent HSC in the periphery. In contrast, stem cells from chronic myeloid leukemia (CML) patients display a constitutive presence in the circulation. To understand the molecular basis for this, we have used microarray technology to analyze the transcriptional differences between dividing and quiescent, normal, and CML-derived CD34+ cells.
Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources.
Specimen part, Disease, Subject
View SamplesKaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions. The disease is caused by the KSHV virus (HHV8) and is recognizable by its distinctive red skin lesions. The lesions are KSHV infected spindle cells, most commonly the lymphatic endothelial and blood vessel endothelial cells (LEC and BEC), plus surrounding stroma. Here we examine KSHVs modulation of Notch signaling using wild-type LEC cells co-cultured with DLL4 and JAG1 expressing LEC cells.
KSHV manipulates Notch signaling by DLL4 and JAG1 to alter cell cycle genes in lymphatic endothelia.
No sample metadata fields
View SamplesHyperglycemia is an essential factor leading to micro- and macrovascular diabetic complications. Macrophages are key innate immune regulators of inflammation that undergo 2 major directions of functional polarization: classically (M1) and alternatively (M2) activated macrophages. The aim of the study was to examine the effect of hyperglycemia on transcriptional activation of M0, M1 and M2 human macrophages.
Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.
Specimen part, Treatment, Subject
View SamplesThe molecular mechanisms underlying the great differences in susceptibility to noise-induced hearing loss (NIHL) exhibited by both humans and laboratory animals are unknown. Using microarray technology, the present study demonstrates that the effects of noise overexposure on the expression of molecules likely to be important to the development of NIHL differ among inbred mice that have distinctive susceptibilities to NIHL including B6.CAST, 129X1/SvJ, and 129S1/SvImJ. The noise-exposure protocol produced, on average, a permanent loss of about 40 dB in sensitivity for auditory brainstem responses in susceptible B6.CAST mice, but no threshold elevations for the two resistant 129S1/SvImJ and 129X1/SvJ substrains. Measurements of noise-induced gene expression changes 6 h after the noise exposure revealed significant alterations in the expression levels of 48 genes in the resistant mice, while by these same criteria, there were seven differentially expressed genes in the susceptible B6.CAST mice. Differentially expressed genes in both groups of mice included subsets of transcription factors. However, only in the resistant mice was there a significant induction of proteins involved in cell-survival pathways such as HSP70, HSP40, p21, GADD45beta, Ier3, and Nf-kappaB. Moreover, increased expression of three of these factors after noise was confirmed at the protein level. Drastically enhanced HSP70, GADD45beta, and p21 immunostaining were detected 6 h after the noise exposure in subsets of cells of the lateral wall, spiral limbus, and organ of Corti as well as in cochlear nerve fibers. Upregulation of these proteins after noise exposure likely contributes to the prevalence of survival cellular pathways and thus to the resistance to NIHL that is characteristic of the 129X1/SvJ mice.
Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage.
No sample metadata fields
View SamplesMicroarray studies revealed that as a first hit, SV40 T/t-antigen causes deregulation of 462 genes in mammary gland cells (ME-cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell-proliferation specific and Rb-E2F dependent, causing ME-cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells, a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture, breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal-ME-cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal-ME-cells. The profile of retransformants shows that only 38 deregulated genes appear to be tumor-relevant and that none of them is considered to be a typical breast cancer gene.
Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.
No sample metadata fields
View Samples