We tamoxifen treated 8-12 week old mice that had floxed alleles of the following: 1) both Apc alleles (giving rise to Apc truncation/inactivation); 2) both Cdx2 alleles (giving rise to Cdx2 inactivation; 3) one Braf allele, that upon Cre-mediated recombination gives a Braf V600E mutant allele (details below), and 4) the combination of both the Cdx2 alleles and the BrafV600E allele. All four of those groups also had a CDX2P-CreERT2 transgene that expresses Cre recombinase fused to a tamoxifen-regulated fragment of the estrogen receptor ligand binding domain. CreERT2 expression occurs only in tissues where the Cdx2 gene is expressed, which is almost exclusively in adult mouse cecum and colon epithelium. A fifth group of mice had the floxed Cdx2 alleles, but no CDX2P-CreERT2 gene. Treating the mice having CDX2P-CreERT2 with tamoxifen permits the Cre recombinase to enter the cell nucleus and recombine the Apc, Braf, and/or Cdx2 alleles containing loxP sequence elements. Mice were treated with intraperitoneal injection of tamoxifen dissolved in corn oil. Three mice per group were used. The control mice did not develop tumors or any morphological or histological changes in their epithelium, but their colons were used to create the 3 control samples. To obtain the BrafV600E allele we used a genetically engineered mouse line previously described by Dankort et al. (Genes Dev 2007, 21:379-84) that can express the BrafV600E mutant protein following Cre-mediated recombination. The Braf(CA) (Braf-Cre-activated) allele mice carry a gene-targeted allele of Braf, where Braf sequences from exons 15-18 are present in the normal mouse Braf intron 14, followed by a mutated exon 15 (carrying the V600E mutation). The exon 15-18 sequence element is flanked by loxP sites. In the absence of Cre-mediated recombination, the Braf(CA) allele expresses a wild type Braf protein. Following Cre-mediated recombination, the Braf exon 15-18 element is removed, and the Braf(CA) allele then encodes the Braf V600E protein (from the introduced mutated exon 15). RNA was purified from tumor or normal tissue, and targets for Affymetrix arrays were synthesized from the mRNAs. We used Affymetrix Mouse Gene 2.1 ST arrays, which hold 41345 probe-sets, but we largely analyzed just those 25216 probe-sets that were mapped to Entrez gene IDs. Raw data was processed with the Robust Multi-array Average algorithm (RMA). Data is log2-transformed transcript abundance estimates. We fit a one-way ANOVA model to the five groups of samples. We supply a supplementary excel workbook that holds the same data as the data matrix file, but also holds the probe-set annotation at the time we analyzed the data, and some simple statistical calculations, which selects subsets of the probe-sets as differentially expressed between pairs of groups, as well as significant Cdx2-/- by Braf V600E interactions. It also gives the homologous human gene IDs we used for enrichment testing, which were 1-to-1 best homologs according to build 68 of NCBI's Homologene. A second supplementary sheet shows the data we enrichment tested after collapsing to distinct human homologs, joins of the results of tests with GSE4045 data and of tests with TCGA data to the mouse genes, and the intersections of selected genes in those data set with our gene selections in mouse. Consumers should consider obtaining more up-to-date probe-set annotation for the array platform.
BRAF<sup>V600E</sup> cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis.
Sex, Treatment
View SamplesIn order to determine the role of the transcription factor Arntl2 in regulating metastatic ability and identify Arntl2-dependent transcriptonal targets in metastatic lung adenocarcinoma, we sequenced the mRNA from 3 mouse metastasis cell lines. Each of these cell lines (482N1shLuciferase, 482N1shArntl2#1, and 482N1shArntl2#2) were derived from the same parental cell line, 482N1. 482N1 was derived from a lymph node metastasis of a Kras LSL G12D, p53 flox/flox 129S1/SvlmJ mouse model of metastatic lung adenocarcinoma. A comparison of shLuciferase and shArntl2 cell lines reveals Arntl2-dependent changes in the metastatic transcriptome. Overall design: This study includes 6 samples: 2 biological replicates of 482N1 shLuciferase, 2 biological replicates of 482N1 shArntl2#1, and 2 biological replicates of 482N1shArntl2#2. Poly-A RNA was isolated and prepared for sequencing using the Illumina TruSeq RNA kit (v2) to generate 100bp paired end reads. Reads were aligned to mm10.
An Arntl2-Driven Secretome Enables Lung Adenocarcinoma Metastatic Self-Sufficiency.
Cell line, Subject
View SamplesInduced pluripotent stem cells (iPSCs) are an essential tool for studying cellular differentiation and cell types that are otherwise difficult to access. Here we investigate the use of iPSCs and iPSC-derived cells to study the impact of genetic variation across different cell types and as models for the genetics of complex disease. We established a panel of iPSCs from 58 well-studied Yoruba lymphoblastoid cell lines (LCLs); 14 of these lines were further differentiated into cardiomyocytes. We characterized regulatory variation across individuals and cell types by measuring RNA, chromatin accessibility and DNA methylation. Regulatory variation between individuals is lower in iPSCs than in the differentiated cell types, consistent with the intuition that developmental processes are generally canalized. While most cell-type- specific regulatory effects lie in chromatin that is open only in the affected cell-types, we find that 20% of cell-type specific effects are in shared open chromatin. Finally, we developed deep neural network models to predict open chromatin regions in these cell types from DNA sequence alone and were able to use the sequences of segregating haplotypes to predict the effects of common SNPs on tissue-specific chromatin accessibility. Our results provide a framework for using iPSC technology to study regulatory variation in cell types that are otherwise inaccessible. Keywords: Expression profiling by high throughput sequencing Overall design: Immortalized lymphoblastoid cell lines from 58 African individuals were reprogrammed into induced pluripotent stem cells
Impact of regulatory variation across human iPSCs and differentiated cells.
Specimen part, Subject
View SamplesMajor roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR dictates distinct ER and PR chromatin binding and differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Genomic analyses of the two PR isoforms, PRA and PRB, indicate that these isoforms bind distinct genomic sites and interact with different sets of co-regulators to differentially modulate gene expression as well as pro- or anti-tumorigenic phenotypes. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Of note, the two isoforms reprogrammed estrogen activity to be either pro or anti-tumorigenic. In concordance to the in-vitro observations, differential gene expression was observed in PRA and PRB-rich patient tumors and importantly, PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. This differential of better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher anti-tumor activity of combination therapies of tamoxifen with PR antagonists and modulators. Knowledge of various determinants of PR action and their interactions with estrogen signaling to differentially modulate breast cancer biology should serve as a guide to the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic. Overall design: For in-vitro experiments, cells were grown in steroid-deprived RPMI for 48 hours to 80% confluence, before being treated for with the hormones of interest (vehicle, 10 nM estrogen, 10 nM R5020 or both estrogen +R5020). Cells were then fixed with 1% formaldehyde for 10 minutes and the crosslinking was quenched with 0.125 M glycine for 5 minutes. Fixed cells were suspended in ChIP lysis buffer (1 ml 1M Tris pH 8.0; 200 µl 5M NaCl; 1 ml 0.5M EDTA; 1 ml NP-40; 1 g SDS, 0.5 g deoxycholate) and sheared in the Diagenode Biorupter for 20 minutes (30 second cycles). 100 µl of sheared chromatin was removed as input control. A 1:10 dilution of sheared chromatin in ChIP dilution buffer (1.7 ml 1M Tris pH 8.0; 3.3 ml 5M NaCl; 5 ml 10% NP-40; 200 µl 10% SDS; to 100 ml with H2O), 4 µg antibody and 30 µl magnetic DynaBeads were incubated in a rotator at 4oC overnight. Chromatin was immunoprecipitated overnight using anti-ER (Santa Cruz Biotechnology HC-20), anti-PR (in-house made KD68) or rabbit IgG (Santa Cruz Biotechnology SC-2027). Next, the immunoprecipitated chromatin was washed with ChIP wash buffer I (2 ml 1M Tris pH 8.0; 3 ml 5M NaCl; 400 µl 0.5M EDTA; 10 ml 10% NP-40; 1 ml 10% SDS; to 100 ml with H2O), ChIP wash buffer II (2 ml 1M Tris pH 8.0; 10 ml 5M NaCl; 400 µl 0.5M EDTA; 10 ml 10% NP-40; 1 ml 10% SDS; to 100 ml with H2O), ChIP wash buffer III (1 ml 1M Tris pH 8.0; 5 ml of 5M LiCl; 200 µl 0.5M EDTA; 10 ml 10% NP-40; 10 ml 10% deoxycholate; to 100 ml with H2O) and TE (pH 8.0). Elution was performed twice from beads by incubating them with 100 µl ChIP-elution buffer (1% SDS, 0.1 M NaHCO3) at 65oC for 15 minutes each. The eluted protein-DNA complexes were de-crosslinked overnight at 65oC in 200 µM NaCl. After de-crosslinking, the mixture was treated with proteinase K for 45 minutes followed by incubation with RNase A for 30 minutes. Finally, DNA fragments were purified using Qiagen PCR purification kit and reconstituted in 50 µl nuclear-free water. Real time PCR was performed using SYBR green. For ChIP-seq library preparations, libraries were prepared using KapaBiosystems LTP library preparation kit (#KK8232) according to the manufacturer's protocol.
Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling.
No sample metadata fields
View SamplesTo uncover the gene expression alterations that occur during lung cancer progression, we interrogated the gene expression state of neoplastic cells at different stages of malignant progression. We initiated tumors in KrasLSL-G12D/+;p53flox/flox;R26LSL-tdTomato (KPT) mice with a pool of barcoded lentiviral-Cre vectors and purified Tomatopositive cancer cells away from the diverse and variable stromal cell populations. Five to nine months after tumor initiation, cancer cells were isolated from individual primary tumors and metastases using fluorescence-activated cell sorting. Sequencing of the barcode region of the integrated lentiviral vectors established primary tumor-metastasis and metastasis-metastasis relationships. Tumor barcoding allowed us to unequivocally distinguish non-metastatic primary tumors (TnonMet) from those primary tumors that had seeded metastases (TMet). We profiled 10 TnonMet samples as well as TMet and metastasis (Met) samples representing 12 metastatic events. To examine additional earlier stages of lung cancer development, we also analyzed premalignant cells from hyperplasias that develop in KPT mice shortly after tumor initiation (KPT-Early; KPT-E), as well as tumors from KrasG12D;R26LSL-tdTomato (KT) mice which rarely gain metastatic ability Overall design: This study includes 52 samples: 3 KP late samples, 3KPT early samples,10 non-metastatic primary tumors, 9 metastatic primary tumors, and 27 metastasis in different organs. total RNA was isolated and prepared for sequencing using the Ovation® RNA-Seq system and Illumina TruSeq DNA kit (v2) to generate 100bp paired end reads. Reads were aligned to mm10.
Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis.
Subject
View SamplesAnalysis of MCF7 cells transfected with ER mutants (S463P, Y537S and D538G) in phenol-red free, charcoal stripped FBS media and regular DMEM/F12 media. Results provide insight on the gene expression profiles induced by the various ER mutants.
ESR1 ligand-binding domain mutations in hormone-resistant breast cancer.
Cell line
View SamplesPancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. The Rab27a GTPase is overexpressed in advanced cancers, can regulate vesicle trafficking, and has been previously linked to non-cell autonomous control of tumor growth and metastasis, however, the role of Rab27a itself in the metastatic propensity of pancreatic cancer is not well understood. Here, we have established a model to study how Rab27a directs formation of the pre-metastatic niche. Loss of Rab27a in pancreatic cancer cells did not decrease tumor growth in vivo, but resulted in altered systemic myeloid cell expansion, both in the primary tumors and at the distant organ sites. In metastasis assays, loss of Rab27a expression in tumor cells injected into circulation compromised efficient outgrowth of metastatic lesions. However, Rab27a knockdown cells had an unexpected advantage at initial steps of metastatic seeding, suggesting that Rab27a may alter cell-autonomous invasive properties of the tumor cells. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive. Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells.
Rab27a plays a dual role in metastatic propensity of pancreatic cancer.
Cell line
View SamplesImmune cell infiltration in myositis were by examining microarray expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls.
Genomic signatures characterize leukocyte infiltration in myositis muscles.
Sex, Specimen part, Disease, Disease stage
View SamplesWe measured gene expression across the whole genome in a panel of lines selected for a wing shape trait (angular offset). The lines were created in separate experiments, originating from two widely separated populations, and including multiple replicates of one population, but all were created using the same selection regime and trait. Here we evaluate the data with two objectives: 1) to identify candidate wing shape genes for future testing and validation, and 2) to assess variation among lines in the outcome of identical selection regimes
Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster.
No sample metadata fields
View SamplesAnalysis of gene expression in pathologically confirmed glioblastoma (GBM) samples. These data were used to test a classifier that was generated to distinguish GBM tumor samples with loss of neurofibromin 1 (NF1) function
A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma.
Sex, Age, Specimen part
View Samples