The MYC transcription factor is an unstable protein and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that proteasomal turnover of MYC is dispensable for recruitment of RNA polymerase II (RNAPII), but is required to promote transcriptional elongation at MYC target genes. Degradation of MYC stimulates histone acetylation and recruitment of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII CTD and the release of elongating RNAPII. In the absence of degradation, the RNA polymerase II-associated factor (PAF) complex associates with MYC via interaction of its CDC73 subunit with a conserved domain in the amino-terminus of MYC ("MYC box I"), suggesting that a MYC/PAF complex is an intermediate in transcriptional activation. Since histone acetylation depends on a second highly conserved domain in MYCs amino-terminus ("MYC box II"), we propose that both domains co-operate to transfer elongation factors onto paused RNAPII. Overall design: RNA-Seq Experiments were performed in a primary breast epithelial cell line (IMEC).The cell line expressed doxycycline-inducible versions of MYC (WT;Kless,Swap=WTN-KC). Where indicated cells were transfected with siRNAs (siCtrl;siSKP2). Where indicated cells were treaed with the proteasome inhibitor MG132 or EtOH as solvent control. DGE was performed by comparing Dox-treated populations expressing either Dox-inducible MYC or a vector control or comparing Dox-induced cells with EtOH (solvent control) treated cells.
Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
No sample metadata fields
View SamplesInhibition of ZNF768 function was achieved by conditional over expression expression of the C-terminal zinc finger of ZNF768 for 12h. For preparation of total RNA cells were resuspended in TRIzol reagent (Life Technologies) at 0.9Mio/ml and snap-frozen. After thawing RNA was extracted from 0.4ml of TriZol lysate using the direct-zol RNA Miniprep (Zymo Research, Irvine CA, USA) as described in the manufacturer's protocol. RNA was assessed for purity by UV-vis spectrometry (Nanodrop) and for integrity by Bioanalyzer (Agilent Bioanalyzer 2100, Agilent, Santa Clara USA)). RNA was of high purity (abs. 260/280 >1.9, abs 269/239>2.1) and integrity (Bioanalyzer RIN>9 ) and thus used for further processing. For production of RNA-seq libraries total RNA was DNAse treated (dsDNAse, Fermentas) and 100 ng of this RNA was processed with a strand-specific protocol (RNA-seq complete kit, NuGEN, San Carlos, USA). In brief the RNA was reverse transcribed to cDNA with a reduced set of hexamer primers, avoiding excessive representation of rRNA in the cDNA. Second strand cDNA synthesis was done in presence of dUTP. After ultrasonic fragmentation of the cDNA and end repair, Illumina-compatible adapter were ligated. Adapters contained uracil in one strand, allowing complete digestion of the second-strand derived DNA. After strand selection the libraries were amplified, assessed for correct insert size on the Agilent Bioanalyser and diluted to 10nM. Barcoded libraries were mixed in equimolar amounts and sequenced on an Illumina HiSeq1500 in single-read mode with a read length of 100 b. Overall design: ZNF768-deltaN
MIR sequences recruit zinc finger protein ZNF768 to expressed genes.
Treatment, Subject
View SamplesSkeletal muscle possesses a remarkable capacity to regenerate when injured, but when confronted with major traumatic injury resulting in volumetric muscle loss (VML), the regenerative process consistently fails. The loss of muscle tissue and function from VML injury has prompted development of a suite of therapeutic approaches but these strategies have proceeded without a comprehensive understanding of the molecular landscape that drives the injury response. Herein, we administered a VML injury in an established rodent model and monitored the evolution of the healing phenomenology over multiple time points using muscle function testing, histology, and expression profiling by RNA sequencing. The injury response was then compared to a regenerative medicine treatment using orthotopic transplantation of autologous minced muscle grafts (~1?mm3 tissue fragments). A chronic inflammatory and fibrotic response was observed at all time points following VML. These results suggest that the pathological response to VML injury during the acute stage of the healing response overwhelms endogenous and therapeutic regenerative processes. Overall, the data presented delineate key molecular characteristics of the pathobiological response to VML injury that are critical effectors of effective regenerative treatment paradigms. Overall design: RNA-Seq time couse of muscle volumetric muscle loss injury healing with controls
Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparing effects of mTR and mTERT deletion on gene expression and DNA damage response: a critical examination of telomere length maintenance-independent roles of telomerase.
Sex, Specimen part
View SamplesTelomerase, the essential enzyme that maintains telomere length, contains two core components, TERT and TR. While early studies in yeast and mouse both indicated that loss of telomerase leads to phenotypes that arise after an increased number of generations, due to telomere shortening, recent studies claim additional roles for telomerase components in transcription and the response to DNA damage. To test these telomere length maintenance-independent roles of telomerase components, we examined first generation mTR-/- and mTERT-/- mice with long telomeres. We used gene expression profiling and found no genes that were expressed at significantly different levels when independent mTR-/- G1 mice were compared to mTERT-/- G1 mice and to wild-type mice. In addition, we compared the response to DNA damage in mTR-/-G1 and mTERT-/- G1 mouse embryonic fibroblasts, and found no increase in the response to DNA damage in the absence of either telomerase components compared to wild-type. We conclude that in the wild-type physiological telomere length setting, neither mTR nor mTERT act as a transcription factor or have a role in the DNA damage response.
Comparing effects of mTR and mTERT deletion on gene expression and DNA damage response: a critical examination of telomere length maintenance-independent roles of telomerase.
Sex, Specimen part
View SamplesTelomerase, the essential enzyme that maintains telomere length, contains two core components, TERT and TR. While early studies in yeast and mouse both indicated that loss of telomerase leads to phenotypes that arise after an increased number of generations, due to telomere shortening, recent studies claim additional roles for telomerase components in transcription and the response to DNA damage. To test these telomere length maintenance-independent roles of telomerase components, we examined first generation mTR-/- and mTERT-/- mice with long telomeres. We used gene expression profiling and found no genes that were expressed at significantly different levels when independent mTR-/- G1 mice were compared to mTERT-/- G1 mice and to wild-type mice. In addition, we compared the response to DNA damage in mTR-/-G1 and mTERT-/- G1 mouse embryonic fibroblasts, and found no increase in the response to DNA damage in the absence of either telomerase components compared to wild-type. We conclude that in the wild-type physiological telomere length setting, neither mTR nor mTERT act as a transcription factor or have a role in the DNA damage response.
Comparing effects of mTR and mTERT deletion on gene expression and DNA damage response: a critical examination of telomere length maintenance-independent roles of telomerase.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesGenome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesGenome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesSPARC is a matricellular glycoprotein involved in regulation of the extracellular matrix, growth factors, adhesion, and migration. SPARC-null mice have altered basement membranes and develop posterior sub-capsular cataracts with cell swelling and equatorial vacuoles. Exchange of fluid, nutrients, and waste products in the avascular lens is driven by a unique circulating ion current. Here we demonstrate that SPARC-null mouse lenses exhibit abnormal circulation of fluid, ion, and small molecules which leads to altered fluorescein distribution in vivo, loss of resting membrane polarization, and altered distribution of small molecules. Microarray analysis of SPARC-null lenses showed changes in gene expression of ion channels and receptors, matrix and adhesion genes, cytoskeleton, immune response genes, and cell signaling molecules. Our results demonstrate that the regulation of SPARC on cell-capsular matrix interactions can influence the circulation of fluid and ions in the lens, and the phenotype in the SPARC-null mouse lens is the result of multiple intersecting pathways.
Absence of SPARC leads to impaired lens circulation.
Sex, Age
View Samples