refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 420 results
Sort by

Filters

Technology

Platform

accession-icon GSE8835
Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells.
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To examine the impact of tumors on the immune system, we compared global gene expression profiles of peripheral blood T cells from previously untreated patients with B cell chronic lymphocytic leukemia (CLL) with those from age-matched healthy donors. Although the cells analyzed were not part of the malignant clone, analysis revealed differentially expressed genes, mainly involved in cell differentiation in CD4 cells and defects in cytoskeleton formation, vesicle trafficking, and cytotoxicity in CD8 cells of the CLL patients. In coculture experiments using CLL cells and T cells from healthy allogeneic donors, similar defects developed in both CD4 and CD8 cells. These changes were induced only with direct contact and were not cytokine mediated. Identification of the specific pathways perturbed in the T cells of cancer-bearing patients will allow us to assess steps to repair these defects, which will likely be required to enhance antitumor immunity.

Publication Title

Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8836
CLL in Em-TCL1 mice provides a biologically relevant model to unravel and reverse immune deficiency in human cancer.
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Immune deficiency is common in cancer, but the biological basis for this and ways to reverse it remains elusive. Here we present a mouse model of B cell chronic lymphocytic leukemia (CLL) that recapitulates changes in the non-malignant circulating T cells seen in patients with this illness.1 To validate this model, we examined changes in T cell gene expression, protein expression and function in Em-TCL1 transgenic mice as they developed CLL 2,3 and demonstrate that development of CLL in these transgenic mice is associated with changes in impaired T cell function and in gene expression in CD4 and CD8 T cells similar to those observed in patients with this disease. Infusion of CLL cells into non-leukemia bearing Em-TCL1 mice rapidly induces these changes, demonstrating a causal relationship between leukemia and the induction of T cell changes. This model allows dissection of the molecular changes induced in CD4 and CD8 T cells by interaction with leukemia cells and further supports the concept that cancer results in complex abnormalities in the immune microenvironment.

Publication Title

E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14924
Characterisation of gene expression changes in T cells from patients presenting with AML compared with healthy T cells
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Work previously published by our group has demonstrated that T cells from patients with chronic lymphocytic leukaemia (CLL) show differentially regulated genes compared with healthy T cells. This study was initiated to examine if these gene expression changes were unique to CLL T cells or common to an alternative leukaemia, acute myeloid leukaemia (AML).

Publication Title

Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27928
Characterization of gene expression of tumor infiltrating T cells (TILs) in previously untreated patients with follicular lymphoma (FL) compared with those of tonsils
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

It has been shown that tumor infiltrating immune cells have a profound impact on the outcome of FL. To find mechanisms whereby TILs are altered gene expession analysis of highly pure TILs were performed.

Publication Title

Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP109188
Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Aberrant promoter DNA hypermethylation is a hallmark of cancer; however, whether this is sufficient to drive cellular transformation in the absence of genetic mutations is not clear. To investigate this question, we use a CRISPR/dCas9 based epigenetic editing tool, where an inactive form of Cas9 is fused to DNMT3A and its regulator DNMT3L. Using this system, we show simultaneous de novo DNA methylation of genes commonly methylated in cancer, CDKN2A, RASSF1, HIC1 and PTEN in primary myoepithelial cells isolated from healthy human breast tissue. We find that promoter methylation is maintained in this system, even in the absence of the fusion construct and results in sustained repression of CDKN2A and RASSF1 transcripts which prevents cells from entering senescence. The phenotype is associated with retuned expression of a subset of genes to levels in early passage cells; however, the outgrowing myoepithelial cells are not immortal but proliferate for 18-20 population doublings before cell cycle arrest. Finally, we show that the key driver of this phenotype is repression of CDKN2A transcript p16, but prolonged proliferation is enhanced by combined hypermethylation and repression of both CDKN2A transcripts p16 and p14. This work demonstrates that hit-and-run epigenetic events can prevent senescence entry, a potential first step in the disease process. Overall design: RNA-seq experiment with n=3 biological replicates of primary myoepithelial transfection with 26x gRNAs targeting DNA methylation as described.

Publication Title

Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE39411
Expression data from healthy and malignant (chronic lymphocytic leukemia, CLL) human B-lymphocytes after B-cell receptor stimulation
  • organism-icon Homo sapiens
  • sample-icon 151 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Three different cell populations (6 healthy B-lymphocytes, 6 leukemic CLL B-lymphocyte of indolent form and 5 leukemic CLL B-lymphocyte of aggressive form) were stimulated in vitro with an anti-IgM antibody, activating the B-cell receptor (BCR). We analyzed the gene expression at 4 time points (60, 90, 210 and 390 minutes). Each gene expression measurement is performed both in stimulated cells and in control unstimulated cells.

Publication Title

Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP091722
Genome-wide effect of AML engraftment on bone marrow endothelial cells
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We analysed the transcriptional signature in endothelial cells extracted from the bone marrow of mice engrafted with human AML and compared it to the one of mice engrafted with human normal hematopoietic cells Overall design: Immunodeficient mice were transplanted with human AML cells derived from patients, or with normal human hematopoietic cells derived from cord blood. Mice were sacrificed once assessed the bone marrow engraftment, and the bones were processed to isolate endothelial cells using the CD31 marker. RNA was extracted, sequencing libraries were prepared and sequenced.

Publication Title

Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE49897
HIF knockdowns in human hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Hematopoietic stem cells (HSCs), which reside in bone marrow niches, are exposed to low levels of oxygen and follow an oxygen gradient throughout their differentiation. Hypoxia-inducible factors (HIFs) are the main factors regulating the cell response to oxygen variation. Recent studies using conditional knockout mouse models have unveiled a major role of HIF-1a in the maintenance of murine HSCs, however the role of HIF-2a is still unclear. Here, we show that knockdown of HIF-2a and to a much lower extent, HIF-1a impedes the long-term repopulating ability of human CD34+ umbilical cord blood derived cells. The defects observed in hematopoietic stem and progenitor cell (HSPC) function after HIF-2a knockdown was due to an increase in the production of reactive oxygen species (ROS), which increases the endoplasmic reticulum (ER) stress in HSPCs and triggers apoptosis by the activation of the unfolded-protein-response (UPR) pathway. Importantly, HIF-2a deregulation also resulted in a significant decrease of engraftment of human acute myeloid leukemia (AML) cells. Overall, our data demonstrates a key role of HIF-2a in the maintenance of human HSPCs and in the survival of primary AML cells.

Publication Title

HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2253
Beta cells (MIN6) treated with amylin at different times and doses and growth at different concentrations of glucose
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Murine pancreatic beta cell line MIN6 was growth at two different concentrations of glucose (22,2 and 5,5 mM of glucose), 37C, 5% CO2 and was treated at four different concentrations of human amylin (0, 1, 10 and 20 uM) during three different times (2, 12 and 24 hours)

Publication Title

Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic beta-cell apoptosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067397
Transcriptomic profiling of alpha, beta, and delta cell populations provides new insights into the role of ghrelin in the pancreas
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Intra-islet crosstalk between islet cells is critical in orchestrating the body’s response to changes in blood glucose levels, but is incompletely understood. In this study, we used transgenic mouse lines that allowed the purification and transcriptomic characterisation of alpha, beta, and delta cells, yielding an RNA-sequencing database that can be searched for regulatory proteins which are differentially expressed between cell types. As an illustrative example, we examined the expression of g-protein coupled receptors, and found that the ghrelin receptor, Ghsr, was highly expressed in delta cells compared to alpha and beta cells. GHSR excitation elicited increases in cytosolic calcium levels in primary delta cells. In the perfused pancreas, the application of ghrelin stimulated somatostatin secretion, correlating with a decrease in insulin and glucagon release, which was sensitive to somatostatin receptor antagonism. These results show that ghrelin acts specifically on delta cells within pancreatic islets to affect blood glucose regulation. Overall design: Examination of transcriptomic profiles obtained from pancreatic alpha, beta and delta cells

Publication Title

Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact