The transcriptomes of four subpopulations of beta cells isolated by FACS from five healthy human donors. Populations were defined using cell surface-labeling antibodies, avoiding the need for fixation. Overall design: There are 5 biological replicates of 4 different cell types. Each donor yielded all 4 subtypes.
Human islets contain four distinct subtypes of β cells.
Specimen part, Subject
View SamplesNumerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3mM and 5mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. We performed a transcriptomic analysis of C. elegans fed with this strain and showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans.
Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.
Time
View SamplesExpression profiling of hepatocytes-derived ductal cells with properties intermediate between mature hepatocytes and cholangiocytes Overall design: Chimeric adult mice were generated where mature hepatocytes were marked with a fluorescent red marker. Chronic injury was induced for ~6weeks and three cell types were isolated by FACS (Influx, BD) for expression analysis by RNAseq based on cell surface phenotype and origin: hepatocytes (n=3), hepatocyte-derived oval cells (1c3+, n=5), and cholangiocyte-derived oval cells (1c3+, n=5).
Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes.
No sample metadata fields
View SamplesWe used wild-type 129 mice to understand the mechanism of action behind SRT3025’s hematopoiesis-enhancing effect. Transcriptome analysis of cKit+ Sca1+ Lin- cells (KSL) cells discovered that a list of genes changed their expression levels significantly after SRT3025 administration in wild-type mice. Most notably, the cell cycle regulator p21 was down-regulated by 2.1 fold after SRT3025 administration. It is possible that the transcriptional suppression of p21 by SRT3025 might contribute to the compound’s beneficial effects on hematopoiesis. It has to be pointed out that, since our transcriptome analysis was limited to hematopoietic stem and progenitor cell population, we cannot rule out the possibility that SRT3025 works through the regulation of other cells such as certain important HSC niche components. The HSC niche is known to regulate stem cell pool size. Among the other genes suppressed by SRT3025, Thbs1 and Fosl2 encode thrombospondin 1 and Fos-like antigen 2, respectively. Both proteins are components of the HSC niche. Overall design: The goal of this study is to investigate gene expression changes in wild-type 129 mice in response to SRT3025 treatment. The study focuses on bone marrow cKit+ Sca1+ Lin- cells (representing hematopoietic stem and progenitor cells). These cells were sorted twice by FACS to ensure the purity. Cells of interest were collected in Trizol. RNA were isolated using RNAeasy mini prep kit and mRNAs were positively selected using oligo(dT)- Dynobeads. Then RNAseq libraries were then made using Illumina TruSeq RNA Sample Prep Kit and sequeced on an Illumina HiSeq 2000 genome analyzer.
The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.
No sample metadata fields
View SamplesWe report here an improved protocol to reprogram mouse gallbladder cells (GBCs) into pancreatic beta cells. To fully understand the extent of reprogramming, mRNA was extracted from FACS-purified MIP-GFP positive insulin-producing cells (namely rGBC2) for RNA-seq after 10-days of in vitro reprogramming. The global gene expression profile of rGBC2 was compared with that of primary gallbladder cells, GBC reprogrammed with the rGBC1 protocol (Hickey et al., 2013) and mouse pancreatic ß cells (Benner et al., 2014). We show that rGBC2 from four independent cell batches showed a unique gene expression phenotype. Compared with the rGBC1 protocol, rGBC2 expressed many additional pancreatic ß cell genes, suppressed many gallbladder genes and resulted in an expression profile closer to pancreatic ß cells. Overall design: Gene expression profiling of galbladder reprogrammed, insulin positive cells using the improved reprogramming protocol
Efficient generation of pancreatic β-like cells from the mouse gallbladder.
Age, Specimen part, Subject
View SamplesFumarylacetoacetate hydrolase (Fah), the last enzyme of the tyrosine degradation pathway, is specifically expressed in hepatocytes in the liver. Loss of Fah leads to liver failure in mice within 6-8 weeks. This can be prevented by blocking tyrosine degradation upstream of Fah with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). Here, we investigate the impact of p21 on global gene expression in Fah deficiency.
Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis.
No sample metadata fields
View SamplesWe used Fancd2-/- mice to understand its mechanism of action. Transcriptome analysis of cKit+ Sca1+ Lin- (KSL) cells discovered that only four genes changed their expression levels significantly after chronic OXM administration in both Fancd2-/- and wild-type mice: mKi67 and Cenpf were up-regualted by 1.4 fold; Spp1 and Oasl2 were significantly down-regulated by 10.5 and 1.5 fold, respectively. Both mKi67 and Cenpf genes are cell cycle-regulated genes and proliferation markers. Their up-regulation was consistent with our observation in flow cytometry analysis that oxymetholone stimulated the proliferation of hematopoietic stem and progenitor cells. RNAseq analysis showed no effects on mTert mRNA expression with chronic androgen therapy, but instead suggested down-regulation of Spp1 and Oasl2 as an important mechanism for the drug’s action. Our RNAseq analysis also revealed that Fancd2-/- KSL cells showed clear changes in mRNA expression profiles compared to wild-type controls: 430 genes were down-regulated by more than 1.5 fold, whereas 159 genes were up-regulated. Gene ontology analysis revealed key pathways to be significantly altered in Fancd2-/- KSL cells. Besides the abnormal cell cycle status expected from our earlier flow cytometry analysis, surprisingly we noticed that a group of genes involved in immune responses and inflammation, comprising Cfp (Properdin), Socs2, Ccr1, Ccr2, Ccr5, Chga (Chromogranin A), Ifi30 (Interferon Gamma-Inducible Protein 30), Lgmn, Txn, and Sell (selectin L), were up-regulated in Fancd2-/- KSL cells. We therefore hypothesize that some genes up-regulated in FA HSPCs may be part of an innate immune response to DNA damage. In addition, whole bone marrow cells were also analyzed in parallel with KSL cells. As compared to whole bone marrow cells, the genes enriched in KSL cells in wild-type mice were listed in details in the corresponding publication. This information can be a good resource for the future gene expression analysis of HSPCs. Finally, we compared the gene expression profiles of early progenitors between OXM-treated and placebo-treated mice. There were no significant differences at all in gene expression between OXM-treated wild-type erythroid progenitors and their placebo-treated wild-type counterparts, with no genes displaying an expression change higher than 1.2 fold. Importantly, no up-regulation of EPO-inducible genes such as Socs1, Socs2, Socs3, and Cish was seen in wild-type mice treated with OXM. Furthermore, there was no differential expression of the well-known EPO target transferrin receptor or any other major players of the Epo-R signaling network such as Bcl2l1, Cdc25a, Btg3, Ccnd2, Lyl1, Pim3, and Tnfrsf13c. These results indicate that EPO might not play a role in the action of OXM in the erythroid lineage. Overall design: The goal of this study is to investigate gene expression changes in Fancd2 knockout mice in response to oxymetholone treatment. The study focuses on two bone marrow cell populations: cKit+ Sca1+ Lin- cells (representing hematopoietic stem and progenitor cells) and Ter119+/CD71high/FSChigh cells (representing proerythroblasts and basophilic erythroblasts). Both populations were sorted twice by FACS to ensure the purity. Cells of interest were collected in Trizol and RNA was isolated using RNAeasy mini prep kit. mRNAs were positively selected using oligo(dT)- Dynobeads and treated with DNase I. RNAseq libraries were then constructed using Illumina TruSeq RNA Sample Prep Kit and sequenced as 51 base-length reads on an Illumina HiSeq 2000 genome analyzer. For KSL libraries, each sample represented total mRNA isolated from pooled KSL cells of 5 individual mice; for basophilic erythroblast libraries, each library represented total mRNA isolated from basophilic erythroblasts of one individual mouse; for whole bone marrow libraries, each sample represented a combined library originally from 5 individual mice. All reads were mapped to the mouse reference genome (version mm9) using Bowtie short read aligner software (http://bowtie-bio.sf.net). Most of the data analysis was performed using EdgeR GLM algorithms. For the comparison of oxymetholone KSL libraries vs placebo KSL libraries, more stringent pair-wise comparisons were used to keep a consistent flow cytometric setting among each pair. The common gene list was the one shared by all three comparisons: COM17 vs HSC_101b, HSC_13 vs HSC_18, and HSC_23 vs QZ_35 for Fancd2-/- KSL cells; HSC_3 vs QZ_36, HSC_22 vs HSC_24, and COM15 vs COM16 for wild-type KSL cells. Data-mining and pathway analysis were carried out with the MetaCore integrated software suite (Thomson Reuters, New York, USA).
Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Cell line, Treatment
View SamplesWe compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Treatment
View SamplesWe compared TET triple knockdown cells to control cells treated with non-targeting siRNAs to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Cell line, Treatment
View Samples