This SuperSeries is composed of the SubSeries listed below.
TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus.
Sex, Cell line
View SamplesShort hairpin RNA (shRNA) expression strategies that allow safe and persistent target mRNA knockdown are key to the success of many in vitro or in vivo RNAi applications. Here, we propose a novel solution which is expression of a promoterless miRNA-adapted shRNA (shmiRNA) from an engineered genomic miRNA locus. For proof-of-concept, we genetically vaccinated liver cells against a human pathogen, by using TALEns or CRISPR to integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr gene. Reporter assays and qRT-PCR confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality. Specificity and safety of shmiRNA integration were validated via PCR, cDNA and miRNA profiling, and whole genome sequencing. A subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNA expression technologies should benefit numerous applications, from basic miRNA research, to human cell and gene therapy
TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus.
Sex, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A NOTCH3 transcriptional module induces cell motility in neuroblastoma.
Specimen part, Cell line
View SamplesMigratory embryonal neuroblasts give rise to several tissues, including the sympathetic nervous system (SNS). Neuroblastomas are paediatric tumours of the peripheral SNS with a highly variable prognosis. We observed that high NOTCH3 expression in neuroblastomas correlated with a poor prognosis. Expression of a NOTCH3 transgene in neuroblastoma cells induced many motility genes and conferred a highly motile phenotype. Expression of these motility genes strongly correlated with NOTCH3 expression in neuroblastomas and many other tumours, suggesting a general role for NOTCH3 in regulation of these genes. Silencing of NOTCH3 or genes of the Notch-processing -secretase complex induced apoptosis in all neuroblastoma cell lines tested. These data suggest that NOTCH3 is a key-regulator of motility, and indispensable for survival of neuroblastoma cells.
A NOTCH3 transcriptional module induces cell motility in neuroblastoma.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme.
Specimen part, Treatment
View SamplesWe performed array-based expression profiling to determine genes regulated by Chd7 and Top2b in CGNs. Our data show Chd7 and Top2b coregulate a common set of neuronal genes.
Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme.
Specimen part, Treatment
View SamplesRNA-seq was performed to compare expression pattern of musles taken form two mice strains- mdx and mdx/Runx1f/f, which are double KO carrting a muscle specific ablation of Runx1 using a Myf5-Cre. This comparison revealed the Runx1- responsive gene set in mdx muscles. we could cross this data with prior retrived datd from privous experiments found in this GEO quary, to pinpiont Runx1 target genes in muscle rgeneration Overall design: RNA was extracted form soleus muscles of 2 months old mice, n=3,4 for mdx and mdx/Runx1f/f, respectively . Differentially expressed genes were discovered using the DeSeq2 software
Genomic-wide transcriptional profiling in primary myoblasts reveals Runx1-regulated genes in muscle regeneration.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic-wide transcriptional profiling in primary myoblasts reveals Runx1-regulated genes in muscle regeneration.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.
Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Cell line, Treatment
View Samples