refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 512 results
Sort by

Filters

Technology

Platform

accession-icon GSE50518
Shp2 Signaling Suppresses Senescence in PyMT-induced Mammary Gland Cancer in Mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE50517
Shp2 Signaling Suppresses Senescence in PyMT-induced Mammary Gland Cancer in Mice [Mouse430_2 array]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated -gal (SA--gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, Focal adhesion kinase and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies which rely on senescence induction by inhibiting Shp2 or controlling its target gene products may be useful in blocking breast cancer.

Publication Title

Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE50516
Shp2 Signaling Suppresses Senescence in PyMT-induced Mammary Gland Cancer in Mice [Mouse430A_2 array]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated -gal (SA--gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, Focal adhesion kinase and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies which rely on senescence induction by inhibiting Shp2 or controlling its target gene products may be useful in blocking breast cancer.

Publication Title

Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67351
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE39186
Effect of TET1 and TET3 overexpression on the transcriptome of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67348
Effect of the simultaneous knockdown of TET1, TET2 and TET3 on the transcriptome of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared TET triple knockdown cells to control cells treated with non-targeting siRNAs to determine global gene expression changes.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP047487
mRNA- and RISC-sequencing of mouse hearts overexpressing miR-378a
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Rationale: MicroRNAs play key roles in hypertrophic stress responses. miR-378(-3p) is a highly abundant, cardiomyocyte-enriched microRNA whose downregulation in pressure-overload has been suggested as detrimental to the heart. Previous studies have utilized systemic anti-miR or microRNA-encoding virus administration, and thus questions regarding the cardiomyocyte-autonomous roles of miR-378 remain. Objective: To examine whether persistent overexpression of miR-378 in cardiomyocytes alters the phenotype of the unstressed heart, whether its overexpression is beneficial or deleterious in the setting of pressure-overload, and to comprehensively identify its cardiomyocyte-specific effects on mRNA regulation. Methods and Results: Cardiac function was compared in young (10-12 week-old) mice overexpressing miR-378 in the heart under the control of the Myh6 promoter (alphaMHC-miR-378 mice), in older (40 week-old) mice and their age-matched wild-type controls. Older alphaMHC-miR-378 mice exhibited decreased fractional shortening and modest chamber dilation with an increase in cardiomyocyte length. When subjected to pressure-overload, cardiomyocyte length was increased in young alphaMHC-miR-378 mice, but fractional shortening declined precipitously over two weeks. Transcriptome profiling of wild-type and alphaMHC-miR-378 hearts in unstressed and pressure-overload conditions revealed dysregulation of several upstream metabolic and mitochondrial genes in alphaMHC-miR-378 hearts, compromising the reprogramming that occurs during early adaptation to pressure overload. Ago2 immunoprecipitation with mRNA sequencing revealed novel miR-378 cardiac mRNA targets including Akt1 and Epac2 and demonstrated the contextual nature of previously described miR-378 targeting events. Conclusions: Long-term upregulation of miR-378 levels in the heart is not innocuous and exacerbates contractile dysfunction in pressure-overload hypertrophy through numerous signaling mechanisms. Overall design: Cardiac polyadenylated RNA (mRNA) or RISC-seq (total RNA-seq of Ago2 immunoprecipitate) profiles were generated from nontransgenic and transgenic mouse hearts of FVB/N background, on Illumina HiSeq 2000 instruments. Male mice 8-12 weeks of age were used in these studies, and subjected to sham surgery or 2 weeks of pressure-overload via transverse aortic constriction (TAC). 3 nontransgenic sham, 3 transgenic sham, 7 nontransgenic TAC, 7 transgenic TAC, each with mRNA-seq and RISC-seq data.

Publication Title

Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP052702
mRNA- and RISC-sequencing of mouse hearts overexpressing miR-133a
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

miR-133a-3p is a highly abundant cardiomyocyte-enriched microRNA whose expression is persistently decreased in response to pressure overload (or transverse aortic constriction, TAC) in mice. Overexpression of miR-133a in cardiomyocytes of mouse hearts in vivo (under the control of the Myh6 promoter) decreases pressure overload-induced apoptosis and fibrosis. In previous studies using microarray platforms, we detected numerous mRNAs whose transcript levels were altered by either or both of miR-133a overexpression and pressure overload. The data set presented here builds upon our previous study in these mice by examining mRNA-RISC associations (using Ago2-immunoprecipitated RNA) and global mRNA abundances via RNA-sequencing procedures, and tests the hypothesis that mRNAs targeted by overexpressed miR-133a are dissimilar between sham and TAC contexts. Overall design: Cardiac polyadenylated RNA (mRNA) profiles were generated from nontransgenic and transgenic mouse hearts of FVB/N background, on Illumina HiSeq 2000 instruments. Male mice 8-12 weeks of age were used in these studies, and subjected to sham surgery or 1 week of pressure-overload via transverse aortic constriction (TAC). 3 nontransgenic sham, 7 transgenic sham, 5 nontransgenic TAC, 4 transgenic TAC, each with mRNA-seq and RISC-seq (mRNA-seq of Ago2 immunoprecipitate) data.

Publication Title

Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13388
Testosterone-induced persistent dysregulations and transdifferentiation to exocrine pancreas in the female liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Androgenic steroids are increasingly used for hormone therapy of postmenopausal women and abused as life style drugs and for doping purposes, though knowledge about associated health risks in females is very limited. In order to understand more about short- and long-term androgen effects on a molecular level, we have analyzed hepatic gene expression in female C57BL/6 mice immediately after subcutaneous treatment with testosterone for 3 weeks and after 12 weeks hormone withdrawal using Affymetrix array technology and quantitative real-time RT-PCR. Among about 14,000 genes examined, 48 were up- and 65 genes were downregulated by testosterone after 3-weeks treatment and about 50% of these changes persisted even 12 weeks after testostrone withdrawal. In addition to obvious risks such as induction of hepatocellular carcinomas and virilization of liver metabolism, testosterone induced a series of changes, as e.g. dysregulation of hepatic gene expression due to incomplete conversion of female to male phenotype in particular downregulation of cytochrom P450 isoforms and sulfotransferases. As a long-term testosterone effect, transcripts emerged in the liver that are normally specific for the exocine pancreas including amylase 2, ribonuclease 1, and several trypsin-, chymotrypsin-, and elastase-like proteases. This transdifferentiation of hepatic to exocrine pancreatic tissue indicates that testosterone can initiate long-lasting differentiation programs, which once induced progress even after androgen withdrawal. This may have far-reaching consequences difficult to foresee implying long-term hazards of testosterone-treatment for female health that have not been taken into account yet.

Publication Title

Testosterone-induced upregulation of miRNAs in the female mouse liver.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE77642
Expression data from WT and L-PGDS ko mice aorta
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarray data to look for gene differentially expressed in the aorta of WT and L-PGDS ko male mice.

Publication Title

Lipocalin-Like Prostaglandin D Synthase but Not Hemopoietic Prostaglandin D Synthase Deletion Causes Hypertension and Accelerates Thrombogenesis in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact