Human umbilical vein endothelial cells (HUVECs) were incubated for 48 h after transfection of scrambled siRNA or siRNA targeting Jmjd6 .
Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1.
Specimen part, Treatment
View SamplesAdipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from the development of inflammation and obesity under normal feeding conditions, and the progression to metabolic dysfunction under dietary stress. Genetic ablation of SIRT1 from adipose tissue leads to gene expression changes that highly overlap with changes induced by high fat diet in wild type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high fat diet induces the cleavage of SIRT1 in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.
High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.
No sample metadata fields
View SamplesSIRT1 deacetylase functions in a variety of cells and tissues to mitigate age- and disease-induced damages. However, it remains unknown if SIRT1 also acts to prevent pathological changes that accrue in motor units, and specifically alpha-motor neurons, with advancing age and during the progression of amyotrophic lateral sclerosis (ALS). Here, we show that SIRT1 expression decreases in the spinal cord of wild type mice with advancing age. Using mouse models that overexpress or inactivate SIRT1 in motor neurons, we discovered that SIRT1 prevents age-related degeneration of motor neurons' presynaptic sites at neuromuscular junctions (NMJs). We also found that increasing SIRT1 in motor neurons delays degeneration of presynaptic sites at NMJs and extends the lifespan of SOD1G93A mice. Thus, SIRT1 has a similar effect on aging and ALS-affected motor neurons, two conditions in which a remarkable number of transcripts are similarly altered in the spinal cord. These include genes involved in inflammatory and immune responses and genes with known function at synapses. These findings show that SIRT1 functions to mitigate pathological changes induced by aging and ALS, two conditions with a surprising degree of overlap in the spinal cord. Overall design: Eight replicates spinal cords from mice aged 18-24 months, eight replicates of spinal cords from mice aged 3-4 months, 3 replicates of spinal cords from ALS symptomatic mice aged 5-6 months and 3 replicates of spinal cords from wt controls aged 5-6 months.
SIRT1 deacetylase in aging-induced neuromuscular degeneration and amyotrophic lateral sclerosis.
Cell line, Subject
View SamplesWe analyzed gene expression profiles of myeloma cells belonging to the group of bas prognosis RPMI 8226 and LP1 expressing either the GFP protein or a cyclin D1-GFP fusion protein
Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway.
Specimen part, Cell line
View SamplesBrdt is a testis specific member of a family of chromatin interacting proteins. All of the family members have been shown to regulate transcription. Brdt is highly expressed in round spermatids, and may play a role in transcriptional regulation in these cells.
The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3'-UTR truncation in round spermatids.
Specimen part
View SamplesWe compared expression of genes in brains of SIRT1 brain-specific knockouts (BSKO) to those of wild-type littermate controls (WT).
SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive.
Sex, Age, Specimen part
View SamplesIn the present study, the transcriptional analysis of CD biopsies reveals profound alterations in the ileum transportome profile. More than 60 SLC transporters showed different expression pattern compared with the healthy donors, being mostly decreased. Changes were confirmed in almost all the eighteen altered SLCs analyzed by RT-PCR. The results obtained display alterations in amino acid transporters, purinome members, Zn transporters and metallothioneins. All together, these alterations which mainly involve transporters localized at the apical membrane of the enterocyte anticipate impaired amino acid uptake and purinergic responses. Remarkably, incubation of explants with specific commensal bacteria restored almost all CD transportome alterations.
Transportome Profiling Identifies Profound Alterations in Crohn's Disease Partially Restored by Commensal Bacteria.
Specimen part, Disease
View SamplesBackground
Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
Specimen part, Cell line
View SamplesThe mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation. Inhibitors of mTOR are being evaluated as anti-tumor agents. Given the emerging role of microRNAs (miRNAs) in tumorgenesis we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Rapamycin resistant myogenic cells developed by long-term rapamycin treatment showed extensive reprogramming of miRNAs expression, characterized by up-regulation of the mir-17~92 and related clusters and down-regulation of tumor-suppressor miRNAs. Antagonists of oncogenic miRNA families and mimics of tumor suppressor miRNAs (let-7) restored rapamycin sensitivity in resistant tumor cells. This study identified miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors.
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
Specimen part, Cell line
View Samples