Host-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA-seq of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering (DI)-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS, and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity. Overall design: Examination of RNA from three different H3N2 viruses (and mock infection) at three timepoints with 3 biological replicates each.
Strand-Specific Dual RNA Sequencing of Bronchial Epithelial Cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesPaternal imprinting initiates in primordial germ cells (PGCs), and is considered largely completed at birth. The resulting postnatal spermatogonial stem cells (SSCs) thenself-renew and proliferate to populate the testicular niche, with sexual maturation enabling productive gametogenesis. Overall design: mRNA profiles of neonatal wild type (WT) mice testis were generated by deep sequencing using Illumina HiSeq 2000 Examination of 2 different histone modifications in mouse spermatogonia Please note that ChIPSeq_Kitplus samples are samples isolated with MACS CD117 microbeads from Miltenyi and ChIPSeq_Kitminus are samples that were not positively selected for Kit.
Transcription and imprinting dynamics in developing postnatal male germline stem cells.
No sample metadata fields
View SamplesProtein Arginine MethylTransferase 5 (PRMT5) is known to mediate epigenetic control on chromatin and to functionally regulate components of the splicing machinery. In this study we show that selective deletion of PRMT5 in different organs leads to cell cycle arrest and apoptosis. At the molecular level, PRMT5 depletion results in reduced methylation of Sm proteins, aberrant constitutive splicing and in the Alternative Splicing (AS) of specific mRNAs. We identify Mdm4 as one of these mRNAs, which due to its weak 5-Donor site, acts as a sensor of splicing defects and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in PRMT5 conditional knockout mice. Our data demonstrate a key role of PRMT5, together with p53, as guardians of the transcriptome. This will have fundamental implications in our understanding of PRMT5 activity, both in physiological conditions, as well as pathological conditions, including cancer and neurological diseases.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesThe resistance of CML leukemic stem cells (LSC) to tyrosine kinase inhibitor therapies targeting BCR-ABL leads to persistence of disease in most cases. We have identified novel putative therapeutic targets that are differentially expressed in CML LSCs compared to normal hematopoietic stem cells (HSC) by transciptional profiling of stem and progenitor cell populations from CML patients and normal donors.
Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Specimen part, Treatment
View SamplesConstitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumors . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification.
Cell line
View SamplesEpithelial ovarian cancer (EOC) is clinically heterogeneous, comprising different histological and biological subtypes. Multiple studies have implicated epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, to contribute significantly to this molecular heterogeneity of EOC. From gene expression analyses of a collection of EMT-characterized EOC cell lines, we found that the expression of the transcription factor Grainyhead-like 2 (GRHL2) correlates with E-cadherin expression and the epithelial phenotype. EOC tumors with lower levels of GRHL2 are associated with the Mes (mesenchymal) molecular subtype and show poorer overall survival in patients. Here, we demonstrate that shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype resulted in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, we identified a variety of target genes regulated by GRHL2, including protein-coding and non-coding genes. Our data suggest that GRHL2 maintains the epithelial phenotype of EOC cells through the regulatory networks of miR-200b/a, ZEB1 and E-cadherin. These findings support GRHL2 as a crucial player in the molecular heterogeneity of EOC.
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification.
Cell line
View SamplesOur findings demonstrate that CDCP1 is a novel modulator of HER2 signalling, and a biomarker for the stratification of breast cancer patients with poor prognosis
Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer.
Cell line
View Samples