Analysis of primary bovine aortic endothelial cells treated for 24 hours with TGF-beta 1 5 ng/ml. TGF-beta 1 has been shown to induce endothelial-to-mesenchymal transition (EndoMT) and to be implicated in differentiation of endothelial cells into smooth muscle-like cells as occurred in vascular neointimal formation.
LOXL4 is induced by transforming growth factor β1 through Smad and JunB/Fra2 and contributes to vascular matrix remodeling.
Specimen part
View SamplesExpression analyses comparing c-Fos expressing keratinocytes vs non-expressing controls.
Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.
Specimen part, Treatment, Time
View SamplesBone marrow-derived dendritic cells from C57BL/6 mice were treated with 1 ug/ml cholera toxin, 10 uM forskolin or control medium for 2 h.
Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax.
No sample metadata fields
View SamplesIdentification of predictive markers of response to treatment is a major objective in breast cancer. A major problem in clinical sampling is the variability of RNA templates, requiring accurate management of tumour material and subsequent analyses for future translation in clinical practice. Our aim was to establish the feasibility and reliability of high throughput RNA analysis in a prospective trial.
Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients.
Specimen part, Disease stage
View SamplesThe lungs are a frequent target of metastatic breast cancer cells, but the underlying molecular mechanisms are unclear. All existing data were obtained either using statistical association between gene expression measurements found in primary tumors and clinical outcome, or using experimentally derived signatures from mouse tumor models. Here, we describe a distinct approach that consists to utilize tissue surgically resected from lung metastatic lesions and compare their gene expression profiles with those from non-pulmonary sites, all coming from breast cancer patients.
A six-gene signature predicting breast cancer lung metastasis.
No sample metadata fields
View SamplesLoss of Amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) drives bladder cancer growth. Low AGL expression predicts poor patient outcome. Currently no specific therapeutically tractable targets/pathways exist that could be used to treat patients with low AGL expressing bladder tumors.
Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis.
Specimen part, Cell line
View SamplesMutations in the poly(A) ribonuclease (PARN) gene cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita (DC)1,2, but how PARN deficiency impacts telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem (iPS) cells from DC patients with PARN mutations, we show that PARN is required for the 3' end maturation of the telomerase RNA component (TERC). Patient cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3' termini reveals that PARN is required for removal of posttranscriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results reveal a novel role for PARN in the biogenesis of TERC, and provide a mechanism linking PARN mutations to telomere diseases. Overall design: mRNA sequencing of fibroblasts, induced pluripotent stem cells, and 293 cell line.
Poly(A)-specific ribonuclease (PARN) mediates 3'-end maturation of the telomerase RNA component.
No sample metadata fields
View SamplesThe mechanisms that allow breast cancer cells to metabolically sustain growth are poorly understood. In breast cancer, FoxA1 transcription factor, along with estrogen receptor, regulates luminal cell specification and proliferation. Here we report that FoxA transcription factor family members FoxA1 and FoxA2 fuel cellular growth in breast cancer through the expression of a common target gene, namely the endothelial lipase (LIPG)
FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth.
Cell line
View SamplesAlthough the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. We evaluated the gene expression profiles of healthy male volunteers who underwent 60 hours of prolonged wakefulness (PW) followed by 12 hours of sleep recovery (SR) using high-resolution microarrays. Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response as well diverse immune system responses such as natural killer pathways including killer cell lectin-like receptors family, as well granzymes and T-cell receptors which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was down-regulated following PW and up-regulated after SR compared to PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC and CEACAM genes, confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.
Specimen part
View SamplesRelative beta cell deficit and increased beta cell apoptosis are hallmarks of type 2 diabetes (T2D). The Insulin/Insulin Growth Factor (Igf) signaling pathway is an established regulator of beta cell survival and is found downregulated in human T2D islets. The Insulin Receptor Substrate 2 (Irs2) plays a central role in the coordination of this pathway in beta cells. Thus, Irs2 knockout mice (Irs2 -/-) exhibit increased beta cell apoptosis that leads to a progressive decline of beta cell mass and hyperglycaemia. In this study, we sought to determine whether the anti-diabetic compound sodium tungstate could prevent the onset of diabetes in Irs2 -/- mice. Oral administration of tungstate resulted in an overall improvement in whole-body glucose tolerance in Irs2 -/- mice which correlated with increased beta cell mass. Enhanced beta cell mass was due to a dramatic reduction of beta cell apoptosis without changes in proliferation. Whole genome gene profiling analysis of islets isolated from treated Irs2 -/- mice confirmed a broad impact of tungstate on cell death pathways. Mechanistically, tungstate induced Erk1/2 phosphorylation in islets in vitro and, in agreement, treated Irs2 -/- islets exhibited increased basal Erk1/2 phosphorylation. Tungstate also downregulated expression of apoptosis-related genes in Irs2-/- islets in vitro, uncovering a direct effect of this compound in islets. All together, our data demonstrate that tungstate can restore beta cell mass and glucose homeostasis in a context of deficient Insulin/Igf signaling. This study underscores the importance of developing strategies specifically designed to arrest beta cell apoptosis as a means to prevent progressive beta cell failure in diabetes.
Tungstate promotes β-cell survival in Irs2-/- mice.
Sex, Specimen part
View Samples