This SuperSeries is composed of the SubSeries listed below.
NF-κB activation impairs somatic cell reprogramming in ageing.
Specimen part, Disease, Disease stage, Treatment
View SamplesTranscriptional profiling of human control and Nstor-Guillermo Progeria Syndrome (NGPS) mesenchymal stem cells (MSCs).
NF-κB activation impairs somatic cell reprogramming in ageing.
Specimen part, Disease, Disease stage, Treatment
View SamplesThis study presents a dynamic characterization of the sheep milk transcriptome aiming at achieving a better understanding of the sheep lactating mammary gland. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in Spanish Churra and Assaf breeds, which differ in their milk production traits. Nearly 67% of the annotated genes in the reference genome (Oar_v3.1) were expressed in ovine milk somatic cells. For the two breeds and across the four lactation stages studied, the most highly expressed genes encoded caseins and whey proteins. We detected differentially expressed genes (DEGs) across lactation points, with the largest differences being found, between day 10 and day 150. Upregulated GO terms at late lactation stages were linked mainly to developmental processes linked to extracellular matrix remodeling. A total of 256 annotated DEGs were detected in the Assaf and Churra comparison. Some genes selectively upregulated in the Churra breed grouped under the endopeptidase and channel activity GO terms. These genes could be related to the higher cheese yield of this breed. Overall, this study provides the first integrated overview on sheep milk gene expression. Overall design: A total of eight healthy sheep were selected to be included in the experiment, four Assaf and four Churra ewes. 32 Milk Somatic Cells (MSCs) samples were collected on days 10, 50, 120 and 150 after lambing. In each time point 4 biological replicates from each breed were collected unless on day 120 that only three biological replicates from each breed were sequenced.
Variant discovery in the sheep milk transcriptome using RNA sequencing.
Specimen part, Subject
View SamplesSalmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems (T3SSs), encoded in pathogenicity islands 1 (SPI1) and 2 (SPI2), respectively. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with certain host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both T3SSs. Nothing is known about the function of this protein inside the host cells. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in epithelial cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also represses genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. Consisted with this analysis a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, reduction of cytotoxicity, cell-cell adhesion and migration capability, and increase in endocytosis.
Global impact of Salmonella type III secretion effector SteA on host cells.
Cell line
View SamplesTo understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.
Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.
Age, Specimen part
View SamplesAuxin is a key phytohormone regulating central processes in plants that include embryo development, lateral root growth and flower maturation among others. Auxin is sensed by a set of F-Box proteins of the TIR1/AFB3 family triggering auxin dependent responses by a pathway that involves an interplay between the Aux/IAA transcription repressors and the ARF transcription factors. We have previously shown that the AFB3 auxin receptor has a specific role in coordinating primary and lateral root growth to external and internal nitrate availability (Vidal et al., 2010). In this work, we used an integrated genomics, bioinformatics and molecular genetics approach to dissect regulatory networks acting downstream AFB3 that are activated by a transient nitrate treatment in Arabidopsis roots. Our systems approach unraveled key components of the AFB3 regulatory network leading to changes in lateral root growth in response to nitrate.
Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots.
Specimen part, Treatment
View SamplesAim:Transcriptional analysis of NKX2.2 knockdown versus control in human pancreatic islets Methods:Pancreatic islets from 3 human donors were transduced with an adenovirus encoding an shRNA directed against human NKX2.2 or a scrambled shRNA control. Total RNA was extracted.Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the human genome (Human: NCBI/build37.2)) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq. Results: Among the dysregulated genes with a p-value=0.05 are important genes for the maintenance of beta cell function and idenity. Conclusion: Nkx2.2 is a critical regulator of beta cell function and identity Overall design: mRNA profiles of the pancreatic islets from 3 human donors transduced with Ad.sh-NKX2.2 or scramble sh-RNA control vector were generated by deep sequencing , using Illumina HiSeq2000.
Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development.
Specimen part, Subject
View SamplesAim:Transcriptional analysis of the pancreatic islets of adult Nkx2.2 flox/flox; RipCre mice versus control Methods:Pancreatic islets from 4week old Nkx2.2 mutant mice and controls were isolated and total RNA was extracted.Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq. Results: Among the downregulated genes with a p-value=0.05 are important genes for beta cell function and idenity.Among the upregulated genes with a p-value=0.05 are non beta endocrine hormones. Conclusion: Nkx2.2 activates important beta cell genes and actively represses non beta cell genes Overall design: mRNA profiles of the pancreatic islets of 4 week old control and Nkx2.2 mutant mice were generated by deep sequencing , in triplicate, using Illumina HiSeq2000.
Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development.
Specimen part, Subject
View SamplesArabidopsis thaliana cell suspension cultures (ACSC) were subjected to 30-min, mild chemical treatments with three different singlet oxygen elicitors at low-medium light conditions (150 E m2 s1) with the aim of getting a better understanding of singlet oxygen-mediated defence responses in plants. The three elicitors Indigo Carmine (IC), Methylene Violet (MV) and Rose Bengal (RB) at a concentration of 0.5 M were chosen because they exhibited different abilities to permeate the plasma membrane and to accumulate in the cell soma or organelles such as chloroplasts. In addition, ACSC were treated with 500 M H2O2 for comparison. Confocal image analysis of Arabidopsis cells revealed that IC was not retained in cells, whereas MV and RB permeated the plasma membrane and accumulated in the chloroplast envelope and inside chloroplasts, respectively. As a consequence of their different cellular location, the physiological, transcriptional and photosynthetic responses of Arabidopsis cells to singlet oxygen production varied from each other and the activation of programmed cell death (PCD) was observed in ACSC treated with 0.5 M RB, but not with the other elicitor nor with 500 M H2O2. The role of chloroplasts in the activation of PCD was further investigated when this physiological response was analyzed in dark-grown cell cultures containing undifferentiated plastids. Interestingly, PCD was only activated in light-grown, but not in dark-grown, Arabidopsis cell cultures, suggesting that singlet oxygen-mediated defence responses were initiated inside chloroplasts. Genome-wide transcriptional profile analyses were performed as well and the results proved that there were only statistically significant changes in the transcript expression of light-grown ACSC treated with 0.5 M RB and 500 M H2O2, but not with IC nor with MV. Functional enrichment analyses revealed that GO/Biological process terms associated with defence responses were common in the treatments with 0.5 M RB and 500 M H2O2; however, resistance response to pathogen and PCD terms were only significantly over-represented in the RB treatment. Moreover, the analysis of the up-regulated transcripts in ACSC treated with 0.5 M RB brought out that both specific markers for singlet oxygen from the conditional fluorescence (flu) mutant of Arabidopsis and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present, although there was no evidence for the up-regulation of EDS1 encoding the ENHANCED DISEASE SUSCEPTIBILITY PROTEIN 1. Finally, a co-regulation analysis proved that ACSC treated with 0.5 M RB exhibited higher correlation with the flu family mutants than with other singlet oxygen producer mutants of Arabidopsis or wild-type plants of Arabidopsis subjected to high light treatments, where singlet oxygen was produced in photosystem II and an acclimatory response was activated instead of PCD.
Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.
Treatment
View SamplesThis microarray experiment serves to identify the genes in the Arabidopsis genome that are regulated by carbon and light signaling interactions in 7 day dark grown seedlings. The expression profile of wild-type will be compared to the cli186 mutant, a mutant defective in carbon and light signaling. Plants of both the wild-type and cli186 genotypes are treated with the following light (L) and carbon (C) treatments: -C-L, +C-L, +C+L, -C+L. Comparison of the expression profiles under all treatments will help to identify genes that are misregulated in carbon and/or light treatments in the cli186 mutant.
An integrated genetic, genomic and systems approach defines gene networks regulated by the interaction of light and carbon signaling pathways in Arabidopsis.
Age
View Samples