Disparate Oxidant-related Gene Expression of Human Small Airway Epithelium Compared to Autologous Alveolar Macrophages in Response to the In Vivo Oxidant Stress of Cigarette Smoking
Disparate oxidant gene expression of airway epithelium compared to alveolar macrophages in smokers.
Sex, Age
View SamplesCystatin A (gene: CSTA), is up-regulated in non-small-cell lung cancer (NSCLC) and dysplastic vs normal human bronchial epithelium. In the context that chronic obstructive pulmonary disease (COPD), a small airway epithelium (SAE) disorder, is independently associated with NSCLC (especially squamous cell carcinoma, SCC), but only occurs in a subset of smokers, we hypothesized that genetic variation, smoking and COPD modulate CSTA gene expression levels in SAE, with further up-regulation in SCC. Gene expression was assessed by microarray in SAE of 178 individuals [healthy nonsmokers (n=60), healthy smokers (n=82), and COPD smokers (n=36)], with corresponding large airway epithelium (LAE) data in a subset (n=52). Blood DNA was genotyped by SNP microarray. Twelve SNPs upstream of the CSTA gene were all significantly associated with CSTA SAE gene expression (p<0.04 to 5 x 10-4). CSTA gene expression levels in SAE were higher in COPD smokers (28.4 2.0) than healthy smokers (19.9 1.4, p<10-3), who in turn had higher levels than nonsmokers (16.1 1.1, p<0.04). CSTA LAE gene expression was also smoking-responsive (p<10-3). Using comparable publicly available NSCLC expression data, CSTA was up-regulated in SCC vs LAE (p<10-2) and down-regulated in adenocarcinoma vs SAE (p<10-7). All phenotypes were associated with significantly different proportional gene expression of CSTA to cathepsins. The data demonstrate that regulation of CSTA expression in human airway epithelium is influenced by genetic variability, smoking, and COPD, and is further up-regulated in SCC, all of which should be taken into account when considering the role of CSTA in NSCLC pathogenesis.
Modulation of cystatin A expression in human airway epithelium related to genotype, smoking, COPD, and lung cancer.
Race
View SamplesMotivation: Identification of eQTL, the genetic loci that contribute to heritable variation in gene expression, can be obstructed by factors that produce variation in expression profiles if these factors are unmeasured or hidden from direct analysis.
HEFT: eQTL analysis of many thousands of expressed genes while simultaneously controlling for hidden factors.
Disease, Race
View SamplesGamma-aminobutyric acid (GABA) is a multifunctional mediator that functions as a neurotransmitter in the central nervous system and a trophic factor during nervous system development, affecting proliferation, differentiation and cell death [1-3].GABA is synthesized from glutamate, catalyzed by GAD65 and GAD67, glutamic acid decarboxylase {Tillakaratne, Medina-Kauwe, et al. 1995 21 /id}{Owens & Kriegstein 2002 3 /id}{Watanabe, Maemura, et al. 2002 73 /id}. In the CNS transporters and catabolic enzymes work in a coordinated fashion to control the availability of GABA {Tillakaratne, Medina-Kauwe, et al. 1995 21 /id}{Owens & Kriegstein 2002 3 /id}{Watanabe, Maemura, et al. 2002 73 /id} It is now recognized that GABA also functions in a variety of organs outside of the CNS [1,3,4]. In the lung, a series of recent studies suggest that the GABAergic signaling system plays a role in the control of asthma related-airway constriction and mucin secretion [5-9]. In the context that goblet cell hyperplasia and mucin overproduction is associated with cigarette smoking [10-12], we hypothesized that components of the GABAergic system may also be altered in the airway epithelium of cigarette smokers. To assess this hypothesis, we evaluated the expression of the entire GABAergic system in the large and small airway epithelium of healthy nonsmokers and healthy smokers. The data demonstrates there is expression of genes for a complete GABAergic system in the airway epithelium. Interestingly, the expression of GAD67 was markedly modified by smoking, with increased expression in healthy smokers compared to healthy nonsmokers at the mRNA and protein levels. In the context that mucus overproduction is commonly associated with cigarette smoking, GAD67 may be a pharmacologic target for treatment of smoking-related disorders.
Smoking-mediated up-regulation of GAD67 expression in the human airway epithelium.
Sex, Age
View SamplesThe Wnt pathway plays a central role in controlling differentiation of epithelial tissues; when Wnt is on, differentiation is suppressed, but when Wnt is off, differentiation is allowed to proceed. Based on this concept, we hypothesized that expression of key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the differentiated state of the airway epithelium. For this purpose, HG-U133 Plus 2.0 microarrays were used to assess the expression of Wnt-related genes in the small airway (10th-12th generation) epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers (n=47), healthy smokers (n=58), and smokers with established COPD (n=22). With expression defined as present in >20% of samples, microarray analysis demonstrated that 35 of 57 known Wnt-related genes are expressed in the adult SAE. Wnt pathway downstream targets -catenin (p<0.05) and the transcription factor 7-like 1 were down-regulated in healthy smokers, and smokers with COPD, as were a number of Wnt target genes, including VEGFA, CCND1, MMP7, CLDN1, SOX9, RHOU (all p<0.05 compared to healthy nonsmokers). As a mechanism to explain this broad, smoking-induced suppression of the Wnt pathway, we assessed expression of the DKK and SFRP families, extracellular regulators that suppress the Wnt pathway. Among these, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold (p<0.0001) in healthy smokers and 4.9-fold (p<0.0001) in COPD smokers, an observation confirmed by TaqMan Real-time PCR. AT the protein levels, Western analysis demonstrated SFRP2 up-regulation, and immunohistochemistry demonstrated that the smoking-induced SFRP2 upregulation occurred in differentiated ciliated cells. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and downregulation of Wnt target genes in airway epithelial cells in vitro. These observations are consistent with the hypothesis that the Wnt pathway plays a role in airway epithelial cell differentiation in the adult human airway epithelium, with smoking associated with down-regulation of Wnt pathway, contributing to the dysregulation of airway epithelial differentiation observed in the smoking-related airway disorders.
Down-regulation of the canonical Wnt β-catenin pathway in the airway epithelium of healthy smokers and smokers with COPD.
Sex, Age
View SamplesDown-regulation of the Notch Differentiation Pathway in the Human Airway Epithelium in Normal Smokers and Smokers with Chronic Obstructive Lung Disease
Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease.
Sex, Age
View SamplesNuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) is an oxidant responsive transcription factor known to induce phase 2 detoxifying and antioxidant genes to protect cells from oxidative stress. Cigarette smoke, with its large oxidant content, is a major stressor to the small airway epithelium, the cells of which are vulnerable to oxidant damage and consequent malignant transformation. In this study, we assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample a pure population of small airway epithelium in 38 healthy nonsmokers and 45 healthy smokers, and gene expression was assessed using Affymetrix HG-U133 Plus 2.0 microarrays. Compared to that of healthy nonsmokers, Nrf2 protein was significantly activated in the small airway epithelium of healthy normal smokers and localized in the nucleus (p<0.05). Of the human homologs of 201 known murine Nrf2-mediated genes, 13 highly smoking-responsive genes were identified (p<10-4, all comparisons smokers to nonsmokers). Using a Nrf2-index to quantify the extent of expression in the small airway epithelium of these 13 known Nrf2 genes, variability in the level of expression was observed among the 45 healthy smokers, but the variability was coordinately modulated among the 13 genes, an observation confirmed by TaqMan quantitative PCR. This variability in the coordinate level of expression of the 13 Nrf2-mediated genes was independent of the smoking history. Based on these observations, the Nrf2 index was used to evaluate whether other genes modulated by smoking in the small airway epithelium were also coordinately up- or down- modulated among the 45 healthy smokers. Two genes, pirin (PIR) and UDP glucuronosyltransferase 1 family polypeptide A4 (UGT1A4), not previously known to be modulated by Nrf2 were identified as being coordinately modulated among the 45 smokers. Both genes contain several functional antioxidant response elements in the promoter region. Using an electrophoretic mobility shift assay, these antioxidant response elements in the promoters of PIR and UGT1A4 responded in vitro to activated Nrf2. These observations are consistent with the concept that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cell population, and that there is variability among the population in the relative Nrf2 responsiveness to a similar oxidant burden.
Coordinate control of expression of Nrf2-modulated genes in the human small airway epithelium is highly responsive to cigarette smoking.
Sex, Age
View SamplesDespite overwhelming data that cigarette smoking causes chronic obstructive pulmonary disease (COPD), only a minority of chronic smokers are affected, strongly suggesting that genetic factors modify susceptibility to this disease. We hypothesized that there are individual variations in the response to cigarette smoking, with variability among smokers in expression levels of protective / susceptibility genes. Affymetrix arrays and TaqMan PCR were used to assess the variability of gene expression in the small airway epithelium obtained by fiberoptic bronchoscopy of 18 normal non-smokers, 18 normal smokers and 18 smokers with COPD.
Variability in small airway epithelial gene expression among normal smokers.
Sex, Age
View SamplesThe project used next generation sequencing for RNA-seq analysis, to identify transcriptome changes associated with tumorigenesis in two different caspase-2 knockout mice models. We describe key changes in both lymphoma and neuroblastoma associated genes in the two tumor types that may contribute to tumor outcome following loss of Casp2. We identified a panel of genes with altered expression in Th-MYCN/Casp2-/- tumors, that are strongly associated with neuroblastoma outcome, and which have roles in melanogenesis, Wnt and Hippo pathway signaling, that also contribute to neuronal differentiation. In addition, we found that key changes in gene expression in the EµMyc/Casp2-/- tumors, are associated with increased immune signaling and suggest that Casp2 deficiency augments immune signaling pathways that may be in turn, enhance lymphomagenesis. Overall, our study has identified new genes and pathways that contribute to the caspase-2 tumor suppressor function and highlight distinct roles for caspase-2 in different tissues. Overall design: We used tumors from EµMyc/Casp2-/- mice (which are more aggressive compared to their EµMyc counterarts) as well as tumors from Th-MycN/Casp2-/- mice (which show delayed tumour onset compared to Th-MycN mice) and compared the transcriptomes to their Casp2 wild type counterpart tumors. Sequencing was carried out with Illumina HiSeq 2000 and used short, single-end reads (1x 50bp flow cells) with 4 samples per lane. This yielded approximately 20-30 million raw reads per sample.
Transcriptome profiling of caspase-2 deficient EμMyc and Th-MYCN mouse tumors identifies distinct putative roles for caspase-2 in neuronal differentiation and immune signaling.
Specimen part, Subject
View SamplesPurpose: Transcriptome is the entire repertoire of all transcripts present in a cell at any particular time. We undertook next-generation whole transcriptome sequencing approach to gain insight of the transcriptional landscape of the developing mouse lens. Methods: We ascertained mice lenses at six developmental time points including two embryonic (E15 and E18) and four postnatal stages (P0, P3, P6, and P9). The ocular tissue at each time point was maintained as two distinct pools serving as biological replicates for each developmental stage. The mRNA and small RNA libraries were paired-end sequenced on Illumina HiSeq 2000 and subsequently analyzed using bioinformatics tools. Results: Mapping of mRNA and small RNA libraries generated 187.56 and 154.22 million paired-end reads, respectively. We detected a total of 14,465 genes in the mouse ocular lens. Of these, 46 genes exhibited 40-fold differential expression compared to transcriptional levels at E15. Likewise, small RNA profiling identified 379 microRNAs (miRNAs) expressed in mouse lens. Of these, 49 miRNAs manifested an 8-fold or higher differential expression when compared, as above to the microRNA expression at E15. Conclusion: We report the first comprehensive profile of developing murine lens transcriptome including both mRNA and miRNA through next-generation RNA sequencing. A complete repository of the lens transcriptome of six developmental time points will be monumental in elucidating processes essential for development of the ocular lens and maintenance its transparency. Overall design: Whole transcrtiome and microRNA profilling of mouse lens using 2 embryonic (E15 and E18) and 4 postnatal stages (P0, P3, P6 and P9) in duplicates through high-throughput sequening using Illumina HiSeq2000.
Identification of novel transcripts and peptides in developing murine lens.
No sample metadata fields
View Samples