Human pluripotent stem cells were differentiated into hematopoietic progenitors, which were then re-specified using defined transcription factors to resemble hematopoietic stem cells (HSC)
Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity.
Specimen part
View SamplesHematopoietic stem cell (HSC) transplantation has the potential to cure blood disorders but is limited by donor availability. Hence innovative approaches to engineer HSC are critically needed. HoxB4 over-expression in mouse embryonic stem cell-derived HSC (ESC-HSC) confers long-term engraftment, yet lacks efficient lymphogenesis. Transcriptome comparison of ESC-HSC versus embryo-derived HSC showed that ESC-HSC are deficient in expression programs activated by Notch. Therefore, we aim to improve ESC-HSC by further providing Notch signals through Notch1 intra-cellular domain transgene activation or by ligand stimulation. Here, we report that Notch-enhanced ESC-HSC (nESC-HSC) confer clonal multipotentiality with robust lymphopoiesis that endows adaptive immunity. Notably, nESC-HSC further evolve to a hybrid cell-type co-expressing gene regulatory networks of hematopoietic stem/progenitor cells and differentiated lineages at single-cell level that accounts for multipotentiality. Our work reveals a proof-of-concept model of HSC engineering by assembling self-renewing factor and lineage-guiding pathway into one product-cell that functionally recapitulate HSC in vivo. Overall design: The gene expression of murine hematopoietic stem cells, ESC, and HSC-like cells derived from differentiation of embryonic stem cells and subsequently transplanted were determined by single cell RNA-Seq.
Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity.
No sample metadata fields
View SamplesHematopoietic stem cell (HSC) transplantation has the potential to cure blood disorders but is limited by donor availability. Hence innovative approaches to engineer HSC are critically needed. HoxB4 over-expression in mouse embryonic stem cell-derived HSC (ESC-HSC) confers long-term engraftment, yet lacks efficient lymphogenesis. Transcriptome comparison of ESC-HSC versus embryo-derived HSC showed that ESC-HSC are deficient in expression programs activated by Notch. Therefore, we aim to improve ESC-HSC by further providing Notch signals through Notch1 intra-cellular domain transgene activation or by ligand stimulation. Here, we report that Notch-enhanced ESC-HSC (nESC-HSC) confer clonal multipotentiality with robust lymphopoiesis that endows adaptive immunity. Notably, nESC-HSC further evolve to a hybrid cell-type co-expressing gene regulatory networks of hematopoietic stem/progenitor cells and differentiated lineages at single-cell level that accounts for multipotentiality. Our work reveals a proof-of-concept model of HSC engineering by assembling self-renewing factor and lineage-guiding pathway into one product-cell that functionally recapitulate HSC in vivo.
Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity.
Specimen part
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of gamma-secretase inhibitors (GSIs). Here, we characterized the interaction between PF-03084014, a clinically-relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Molecular characterization of the response to PF-03084014 plus glucocorticoids through gene expression profiling revealed transcriptional upregulation of the glucocorticoid receptor as the mechanism mediating the enhanced glucocorticoid response. Moreover, treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment was highly effective at reversing PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results suggest that combination of PF-03084014 treatment with glucocorticoids may be well-tolerated and highly active for the treatment of glucorticoid-resistant T-ALL.
Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.
Cell line, Treatment
View SamplesThe study aimed to resolve the mechanisms of protective actions of MMP-8 in oral tongue squamous cell carcinoma.
The interplay of matrix metalloproteinase-8, transforming growth factor-β1 and vascular endothelial growth factor-C cooperatively contributes to the aggressiveness of oral tongue squamous cell carcinoma.
No sample metadata fields
View SamplesDespite timely and successful surgery, 32% of patients with bilateral and 10% with unilateral cryptorchidism will develop azoospermia. Cryptorchid boys at risk of azoospermia display a typical testicular histology of impaired mini-puberty at the time of the orchidopexy.
Testicular gene expression in cryptorchid boys at risk of azoospermia.
Specimen part
View SamplesTo formally address the tumor suppressor activity of Sh2b3 in vivo, we tested the interaction between oncogenic NOTCH1 and Sh2b3 loss in a retroviral- transduction bone marrow transplantation model of NOTCH-induced T-ALL
Genetic loss of SH2B3 in acute lymphoblastic leukemia.
Specimen part
View SamplesEarly immature T-cell acute lymphoblastic leukemias (T-ALLs) account for about 5-10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. Analysis of microarray gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid leukemias. Consistently, adult immature T- ALLs showed characteristic mutations in myeloid specific oncogenes and tumor suppressors including IDH1, IDH2, DNMT3A, FLT3 and NRAS. Moreover, we identified ETV6 mutations as a novel genetic lesion uniquely present in immature adult T-ALL. All together, our results demonstrate that early immature adult T- ALL represents a heterogeneous category of leukemias characterized by the presence of overlapping myeloid and T-ALL characteristics and highlight the role of ETV6 mutations in these tumors.
ETV6 mutations in early immature human T cell leukemias.
Specimen part
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling. In this study we used a mouse model of T-ALL through the overexpression of the intarcellular transcriptionally active part of Notch1 (N1-IC). This model faithfully recapitulates the major characteristics of the human disease. Comparison of the leukemic cells from peripheral tumors(thymoma) of this mouse model to normal thymic cells Double Positive (DP) for the markers CD4 and CD8 that express very low levels of Notch1 showed major expression changes in pathways controlling the transition from physiology to disease. Further correlation of the data to ChIP-Seq data from the same cell populations led us to identify a hitherto unknown antagonism of the Notch1 oncogenic pathway and the polycomb complex (PRC2) in leukemia. Importantly exome sequencing in primary samples from human patients with T-ALL revealed that the PRC2 complex is frequently mutated and inactivated, further supporting the tumor suppressor role of the complex in this disease.
Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia.
Specimen part, Disease
View Samples