refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 60 results
Sort by

Filters

Technology

Platform

accession-icon GSE54417
mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage.

Publication Title

mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-325
Transcription profiling of human samples from intervention study with two doses of iron (as ferrous gluconate via intestinal perfusion) to study the effect on genome wide gene expression in the small intestine
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human intervention study with two doses of iron (as ferrous gluconate via intestinal perfusion) to study the effect on genome-wide gene expression in the small intestine, in order to obtain detailed information about intestinal transcriptomics in vivo.

Publication Title

Gene expression in human small intestinal mucosa in vivo is mediated by iron-induced oxidative stress.

Sample Metadata Fields

Sex, Disease, Disease stage, Subject

View Samples
accession-icon SRP097081
Transcriptomic analysis of Drosophilalarval crystal cells
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Crystal cells are one of the 3 Drosophila blood cell lineages and represent less than 5% of the total hemocytes in wild type larvae. There development is notably controlled by mlf (myeloid leukemia factor), which regulate their number by stabilising the lineage-specific transcription factor Lozenge. To gain insight into the biology of this blood cell lineage and its regulation by mlf, we established the gene expression profile of the circulating crystal cells in wildtype and mlf mutant third instar larvae. This study provides a rich source of information to further characterise crystal cell function and regulation. In addition our data show that mlf is a major regulator of crystal cell gene expression programm and that mlf mutation leads to the accumulation of misdifferentiated crystal cells. Overall design: RNA expression profiles of sorted lz-GAL4,UAS-GFP+ circulating blood cells from wild type and mlf-/- third instar Drosophila larvae were generated by deep sequencing, in triplicate, using Illumina HiSeq2500 sequencing platform.

Publication Title

Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP158614
Gene expression analysis of Ovol2-deficent newborn keratinocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report the differential gene expression differences between control and Ovol2-deficent newborn keratinocytes Overall design: Two control and two Ovol2-deficent samples were isolated

Publication Title

An Ovol2-Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE45554
Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in proximal colon of male pigs
  • organism-icon Sus scrofa
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge on its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic pathways were modulated. Ten 17-wk-old male pigs, fitted with a cannula in the proximal colon for repeated collection of tissue biopsy samples and luminal content, were fed a digestible starch (DS) diet or a diet high in RS (34%) for 2 consecutive periods of 14 d in a crossover design. Analysis of the colonic transcriptome profiles revealed that, upon RS feeding, oxidative metabolic pathways, such as the tricarboxylic acid cycle and -oxidation, were induced, whereas many immune response pathways, including adaptive and innate immune system, as well as cell division were suppressed. The nuclear receptor peroxisome proliferator-activated receptor (PPARG) was identified as a potential key upstream regulator. RS significantly (P < 0.05) increased the relative abundance of several butyrate-producing microbial groups, including the butyrate producers Faecalibacterium prausnitzii and Megasphaera elsdenii, and reduced the abundance of potentially pathogenic members of the genus Leptospira and the phylum Proteobacteria. Concentrations in carotid plasma of the 3 main short-chain fatty acids acetate, propionate, and butyrate were significantly higher with RS consumption compared with DS consumption. Overall, this study provides novel insights on effects of RS in proximal colon and contributes to our understanding of a healthy diet.

Publication Title

Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE75960
Expression data from non-small cell lung cancer cell line DV90 after Bromodomain and extra terminal domain (BET) inhibitor JQ1 treatment
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Bromodomain and extra terminal domain (BET) inhibition reduces occupancy of BET-family proteins at promoter and enhancer sites resulting in changes in the transcription of specific genes.

Publication Title

Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP009919
Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We used transgenic mouse embryos that are deficient in the two enzymatically active RNA editing enzymes ADAR1 and ADAR2 to compare relative frequencies but also sequence composition of mature miRNAs in these genetically modified backgrounds to wild-type mice by Illumina next gen sequencing. Deficiency of ADAR2 leads to a reproducible change in abundance of specific miRNAs and their predicted targets. Changes in miRNA abundance seem unrelated to editing events. Additional deletion of ADAR1 has surprisingly little impact on the mature miRNA repertoire, indicating that miRNA expression is primarily dependent on ADAR2. A to G transitions reflecting A to I editing events can be detected at few sites and at low frequency during the early embryonic stage investigated. Again, most editing events are ADAR2 dependent with only few editing sites being specifically edited by ADAR1. Besides known editing events in miRNAs a few novel, previously unknown editing events were identified. Some editing events are located to the seed region of miRNAs opening the possibility that editing leads to their retargeting. Overall design: GSM852140-8: sequencing of mature miRNAs of wt, ADAR2-/- and ADAR1-/-/ADAR2-/- female mouse embryos at E11.5 GSM863778-81: Gene expression was measured in wiltype, ADAR2-/- and ADAR1-/-/ADAR2-/- E11.5 whole female mouse embryos using Agilent Whole Mouse Genome Oligo Microarrays 8x60K.

Publication Title

Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE61068
ADAR2 reproducibly changes abundance and sequence of mature microRNAs in the mouse brain
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Illumina Genome Analyzer II

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP059758
A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2alpha [gene expression]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Lamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2alpha. Here we show lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation analyses of eu- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, the depletion of which shifts binding of lamin A/C towards more heterochromatic regions. These alterations in lamin A/C chromatin interaction affect epigenetic histone marks in euchromatin without significantly affecting gene expression, while loss of lamin A/C in heterochromatic regions increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin. Overall design: Examination of LaminA, LaminB and Lap2a DNA binding in Lap2alpha +/+ and Lap2a -/- cells and according changes in Histone modifications and gene expression

Publication Title

A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61067
ADAR2 reproducibly changes abundance and sequence of mature microRNAs in the mouse brain [gene expression]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Illumina Genome Analyzer II

Description

Background: Adenosine deaminases that act on RNA (ADARs) bind to double-stranded and structured RNAs and deaminate adenosines to inosines. This A to I editing is widespread and required for normal life and development. Besides mRNAs and repetitive elements, ADARs can target miRNA precursors. Editing of miRNA precursors can affect processing efficiency and alter target specificity. Interestingly, ADARs can also influence miRNA abundance independent of RNA-editing. In mouse embryos where editing levels are low, ADAR2 was found to be the major ADAR protein that affects miRNA abundance. Here we extend our analysis to adult mouse brains where high editing levels are observed.

Publication Title

ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact