refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 924 results
Sort by

Filters

Technology

Platform

accession-icon GSE10526
Role of P. gingivalis SerB in Gingival Epithelial Cell Cytoskeletal Remodeling and Cytokine Productions.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional profiling of oral keratinocytes was utilized to define the biological role of P. gingivalis SerB.

Publication Title

Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6927
Gingival Epithelial Cell Transcriptional Responses to Commensal and Opportunistic Oral Microbial Species.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional profiling was utilized to define the biological pathways of gingival epithelial cells modulated by co-culture with the oral commensal S. gordonii and the opportunistic commensal F. nucleatum.

Publication Title

Gingival epithelial cell transcriptional responses to commensal and opportunistic oral microbial species.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16134
Bacterial Correlates of Gingival Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 307 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis.

Publication Title

Subgingival bacterial colonization profiles correlate with gingival tissue gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10334
Transcriptomes in Healthy and Diseased Gingival Tissues
  • organism-icon Homo sapiens
  • sample-icon 242 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We examined gene expression signatures in healthy and diseased gingival tissues in 90 patients. Analysis of the gingival tissue transcriptome in states of periodontal health and disease may reveal novel insights of the pathobiology of periodontitis.

Publication Title

Transcriptomes in healthy and diseased gingival tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12121
Gingival Epithelial Cell Responses to a Complex Microbiome Comprising Commensal and Opportunistic Oral Microbial Species
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profiling was utilized to define the biological pathways of gingival epithelial cells modulated by mono- and complex co-culture with oral commensal S. gordonii and pathogenic P. gingivalis.

Publication Title

The degree of microbiome complexity influences the epithelial response to infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9723
Gingival Epithelial Cell Transcriptional Responses to Pathogenic Oral Microbial Species.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional profiling was utilized to define the biological pathways of gingival epithelial cells modulated by co-culture with the oral pathogenic Porphyromonas gingivalis and Aggregatibacter (formerly actinobacillus) actinomycetemcomitans.

Publication Title

Distinct transcriptional profiles characterize oral epithelium-microbiota interactions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-3397
Transcription profiling of DEX-inducible SNRK3.15 Arabidopsis seedlings in the presence of ABA
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional profiling of a DEX-inducible SNRK3.15 seedlings in the presence of ABA.

Publication Title

A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE17110
Gene expression data from P. gingivalis infected Mouse
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The objectives of this investigation were to examine changes in the host transcriptional profiles during a Porphyromonas gingivalis infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis strain 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.

Publication Title

Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP186159
Effect of DKK1 on embryo elongation
  • organism-icon Bos taurus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

We report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome

Publication Title

Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE21266
Effect of Ursodeoxycholic acid on gene expression in the intestial epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Background & Aims: Ursodeoxycholic acid (UDCA) attenuates chemical and colitis-induced colon carcinogenesis in animal models. We investigated its mechanism of action on normal intestinal cells, in which carcinogenesis- or inflammation-related alterations do not interfere with the result. Methods: Alterations of gene expression were identified in Affymetrix arrays in isolated colon epithelium of mice fed with a diet containing 0.4% UDCA and were confirmed in the normal rat intestinal cell line IEC-6 by RT-PCR. The effect of the insulin receptor substrate 1 (Irs-1) expression and of ERK phosphorylation on proliferation was investigated in vitro by flow cytometry, western blotting, siRNA-mediated gene suppression or by pharmacological inhibition of the kinase activity. The ERK1-effect on Irs-1 transcription was tested in a reporter system. Results: UDCA-treatment in vivo suppressed potential pro-proliferatory genes including Irs-1 and reduced cell proliferation by more than 30%. In vitro it neutralised the proliferatory signals of IGF-1 and EGF and slowed down the cell cycle. Irs-1 transcription was suppressed due to high ERK1 activation. Both Irs-1 suppression and the persistent high ERK activation inhibited proliferation. Conversely, the decrease of phosphorylation of ERK1 (but not ERK2) or of its expression partially abrogated the inhibitory effects of UDCA. Conclusions: UDCA inhibits proliferation of intestinal epithelial cells by acting upon IGF-1 and EGF pathways and targeting ERK1 and, consequently, Irs-1. The inhibition of these pathways adds a new dimension to the physiological and therapeutic action of UDCA and, since both pathways are activated in inflammation and cancer, suggests new applications of UDCA in chemoprevention and chemotherapy.

Publication Title

UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact