refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 924 results
Sort by

Filters

Technology

Platform

accession-icon GSE19310
Expression data from wild type C. elegans and 5 osmotic stress resistant mutants exposed to hyper/isotonic environments
  • organism-icon Caenorhabditis elegans
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Adaptation of C. elegans to hypertonic environments involves the accumulation of the organic osmolyte glycerol via transcriptional upregulation of the glycerol biosynthestic enzyme gpdh-1. A number of mutants, termed osmotic stress resistant (osr) mutants, have been identified. osr mutants cause constitutive upregulation of gpdh-1 and confer extreme resistance to hypertonicity. We tested the hypothesis that osr mutants broadly activate a gene expression program normally activated by osmotic stress in wild type animals using Affymterix microarray analysis of the hypertonic stress response in wild type animals and of constituitive gene expression changes in five osr mutants.

Publication Title

Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9471
Diurnally regulated gene expression in the prefrontal cortex of C57Bl/6J mice at Zeitgeber Time (ZT) 3, 9, 15, and 21.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: The prefrontal cortex is important in regulating sleep and mood. Diurnally regulated genes in the prefrontal cortex may be controlled by the circadian system, by the sleep-wake states, or by cellular metabolism or environmental responses. Bioinformatics analysis of these genes will provide insights into a wide-range of pathways that are involved in the pathophysiology of sleep disorders and psychiatric disorders with sleep disturbances. Results: We examined gene expression in the mouse prefrontal cortex at four time points during the 24-hour (12-hour light:12-hour dark) cycle by microarrays, and identified 3,890 transcripts corresponding to 2,927 genes with diurnally regulated expression patterns. We show that 16% of the genes identified in our study are orthologs of identified clock, clock controlled or sleep/wakefulness induced genes in the mouse liver and SCN, rat cortex and cerebellum, or Drosophila head. The diurnal expression patterns were confirmed in 16 out of 18 genes in an independent set of RNA samples. The diurnal genes fall into eight temporal categories with distinct functional attributes, as assessed by the Gene Ontology classification and by the analysis of enriched transcription factor binding sites. Conclusions: Our analysis demonstrates that ~10% of transcripts have diurnally regulated expression patterns in the mouse prefrontal cortex. Functional annotation of these genes will be important for the selection of candidate genes for behavioural mutants in the mouse and for genetic studies of disorders associated with anomalies in the sleep:wake cycle and circadian rhythms.

Publication Title

Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3963
Differential expression: associative and nonassociative learning
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Hippocamus and amygdala expression was examined in nave, conditioned stimulus exposed, and fear conditioned mice 30 minutes after behavioral manipulation

Publication Title

Differential transcriptional response to nonassociative and associative components of classical fear conditioning in the amygdala and hippocampus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38316
Myocardin-like Protein (MKL)-2 Regulates TGF- Signaling in Embryonic Stem Cells and the Developing Vasculature
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Signal transduction from the extracellular matrix to the arterial wall plays a critical role during development of the vasculature. We now report the discovery of a Myocardin-like Protein (MKL)2/TGF- signaling pathway that is required for maturation and stabilization of the vasculature. Mkl2-/- null embryos exhibit profound derangements in the tunica media leading to aneurismal dilation, dissection and hemorrhage.

Publication Title

Myocardin-like protein 2 regulates TGFβ signaling in embryonic stem cells and the developing vasculature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5406
Human ischemic cardiomyopathy, idiopathic cardiomyopathy, and nonfailing controls
  • organism-icon Homo sapiens
  • sample-icon 210 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Left ventricular myocardium was snap-frozen at time of cardiac transplantation from patients with advanced idiopathic or ischemic cardiomyopathy, or at time of harvest from unused donor heart that serve as a nonfailing control. No subjects received mechanical support devices.

Publication Title

Transcriptional genomics associates FOX transcription factors with human heart failure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11664
gene expression of CTCF-depleted mouse oocyte
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CTCF is a multifunctional nuclear factor involved in epigenetic regulation. We have used transgenic RNA interference to deplete maternal stores of CTCF from growing mouse oocytes, and identified the potential target genes

Publication Title

Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57338
RNA-Seq Identifies Novel Myocardial Gene Expression Signatures of Heart Failure [microarray]
  • organism-icon Homo sapiens
  • sample-icon 313 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

We have utilized the RNA-Seq technology to identify genes with distinct expression patterns between failing and non-failing hearts. In an era of next-generation sequencing studies, our study demonstrates how knowledge gained from a small set of samples with accurately measured gene expressions using RNA-Seq can be leveraged as a complementary strategy to discern the genetics of complex disorders.

Publication Title

RNA-Seq identifies novel myocardial gene expression signatures of heart failure.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE33302
Expression data from sleep deprivation experiment in mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays to detail the global programme of gene expression underlying the effect of sleep deprivation in the mouse hippocampus and identified distinct classes of regulated genes during this process.

Publication Title

Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP014484
Differences in CTCF binding site sequence are associated with unique regulatory and functional trends during embryonic stem cell differentiation [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

CTCF (CCCTC-binding factor) is a highly conserved 11-zinc finger DNA binding protein with tens of thousands of binding sites genome-wide. CTCF acts as a multifunctional regulator of transcription, having been previously associated with activator, repressor, and insulator activity. These diverse regulatory functions are crucial for preimplantation development and are implicated in the regulation of numerous lineage-specific genes. Despite playing a critical role in developmental gene regulation, the mechanisms that underlie developmental changes in CTCF recruitment and function are poorly understood. Our previous work suggested that differences in CTCF’s binding site sequence may affect the regulation of CTCF recruitment, as well as CTCF’s regulatory function. To investigate these two possibilities directly during a developmental process, changes in genome-wide CTCF binding and gene expression were characterized during in vitro differentiation of mouse embryonic stem cells. CTCF binding sites were initially separated into three classes (named LowOc, MedOc, and HighOc) based on similarity to the consensus motif. The LowOc class, with lower-similarity to the consensus motif, is more likely to show changes in binding during differentiation. These more dynamically bound sites are enriched for motifs that confer a lower in vitro affinity for CTCF, suggesting a mechanism where sites with low-binding affinity are more amenable to developmental control. Additionally, by comparing changes in CTCF binding with changes in gene expression during differentiation, we show that LowOc and HighOc sites are associated with distinct regulatory functions. In sum, these results suggest that the regulatory control of CTCF’s binding and function is dependent in part upon specific motifs within its DNA binding site. Overall design: Mouse E14 ES cells were differentiated in vitro for 4.5 days using retinoic acid. RNA-Seq was performed from cells collected before and after differentiation.

Publication Title

CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE57674
siPools: highly complex but accurately defined siRNA pools eliminate Off-target effects
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact