When adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, CLIP and RNAseq data from the arsenite treatment experiment are presented. Experiments on 293S cells +/- arsenite treatment, in 4 biological replicates. On each treatment/replicate biological sample, both a CLIP-seq protocol and an RNA-seq protocol were performed, so these datasets are “paired” in addition to the treatment pairing.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, CLIP and RNAseq data from the hippuristanol treatment experiment are presented. Experiments on 293S cells +/- hippuristanol treatment, in 2 biological replicates. Here, for each treatment/replicate sample, an aliquot was used for RNA-seq, and the rest was split into three aliquots to perform 3 parallel CLIP-seq protocols with different antibodies. So, each RNA-seq dataset here corresponds to 3 CLIP-seq datasets.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, RNAseq data from sucrose gradient fractions with arsenite treatment are presented.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, CLIP and RNAseq data from the emetine treatment experiment are presented. Experiments on 293S cells +/- emetine treatment, in 1 biological replicate. Here, for each treatment/replicate sample, an aliquot was used for RNA-seq, and the rest was split into three aliquots to perform 3 parallel CLIP-seq protocols with different antibodies. So, each RNA-seq dataset here corresponds to 3 CLIP-seq datasets.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesMicroRNAs (miRNA) are implicated in brain development and function but the underlying mechanisms have been difficult to study in part due to cellular heterogeneity in neural circuits. To systematically analyze miRNA expression in neurons, we have established a miRNA tagging and affinity purification (miRAP) method that is targeted to cell types through the Cre-loxP binary system in mice. Our studies of the neocortex and cerebellum reveal the expression of a large fraction of known miRNAs with distinct profiles in glutamatergic and GABAergic neurons, and subtypes of GABAergic neurons. We further detected putative novel miRNAs, tissue or cell type-specific strand selection of miRNAs, and miRNA editing. Our method thus will facilitate a systematic analysis of miRNA expression and regulation in specific neuron types in the context of neuronal development, physiology, plasticity, pathology and disease models, and is generally applicable to other cell types and tissues. Overall design: RNA was extracted from miRNA tagging samples(Ago2 IP or Myc IP), processed and sequenced on Illumina genome analyzer
Cell-type-based analysis of microRNA profiles in the mouse brain.
Specimen part, Subject
View SamplesIn animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown, a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown. Overall design: Analysis of mRNA expression in Drosophila OSS cells transfected with GFP dsRNA. One sample and replicate, used to establish the OSS baseline transcriptome in the presence of exogenous RNAi activity.
shutdown is a component of the Drosophila piRNA biogenesis machinery.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization.
Cell line
View SamplesIn animals, piRNAs, and their associated Piwi proteins, guard germ cell genomes against mobile genetic elements via an RNAi-like mechanism. In C. elegans, 21U-RNAs comprise the piRNA class and these collaborate with 22G RNAs, via unclear mechanisms, to discriminate self from non-self and selectively and heritably silence the latter. Recent work indicates that 21U-RNAs are post-transcriptional processing products of individual transcription units that produce ~26 nucleotide capped precursors. Yet, nothing is known of how the expression of precursors is controlled or of how primary transcripts give rise to mature small RNAs. We conducted a genome-wide RNAi screen to identify components of the 21U biogenesis machinery. Screening by direct, qPCR-based measurements of mature 21U-RNA levels, we identified 22 genes important for 21U-RNA production, termed TOFUs (Twenty-One-u Fouled Up). We also identified 7 genes that normally repress 21U production. By measuring mature 21U-RNA and precursor levels for the 7 strongest hits from the screen, we have assigned factors to discrete stages of 21U-RNA production. Our work has identified factors separately required for the transcription of 21U precursors, and the processing of these precursors into mature 21U-RNAs, thereby providing an essential resource for studying the biogenesis of this important small RNA class. Overall design: Small RNA and capped small RNA sequencing from total RNA of C. elegans subjected to different RNAi and different C. elegans mutants
A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis.
Age, Subject
View SamplesTo characterize the sequence of events associated with RasV12 immortalization of Drosophila embryonic cells, we generated transcriptional time series during cell line establishment, from primary cultures until passage (P) 19. Overall design: We generated three transcriptional time series from three cell lines (R1, R4 and R5) by sampling the cultures at successive stages, early (P2-4), intermediate (P4-11), and late (P16-19), characterized by different passage times. Time points for the R1 time-series were: P2, P3, P4, P5, P7, P8, P10, P11, P16, P17 and P19; for the R4 time-series: P2, P3, P4, P5, P6, P7, P9, P11, P12, P16, P17 and P19; and for the R5 time-series: P2, P3, P4, P6, P7, P8, P16, P17 and P19
Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization.
Cell line, Subject
View SamplesWe report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome
Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.
Treatment, Subject
View Samples