The goal of this study is to elucidate the influence of treadmill training on transcriptome of the upper lumbar spinal cord after thoracic spinal cord hemisection. mRNA profiles of spinal cords at 23 days-post injury with/without treadmill training were generated. The expression levels of 650 genes in the trained animal were increased ( > 2-fold) compared to untrained animals. Our study represents the detailed analysis of transcriptomes of spinal cord distal to the hemisected lesion after treadmill training, with biologic replicates, generated by RNA-seq technology. Overall design: The effect of training after spinal cord injury (T9) on the transcriptome of intact upper spinal cord was investigated.
Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
Specimen part
View SamplesWe collected globular stage seed compartments from 5 or 7-micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments of an Arabidopsis seed containing a globular stage embryo. For the purposes of this study we broke down the seed into 8 capturable compartments: embyro proper, suspensor, micropylar endosperm, peripheral endosperm, chalazal endosperm, chalazal seed coat, general seed coat, and whole seeds.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
No sample metadata fields
View SamplesWe collected heart stage seed compartments from 7 micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments from seeds containing heart stage embryos. For the purposes of this study we captured 6 compartments: embryo proper, micropylar endosperm, peripheral endosperm, chalazal endosperm, chalazal seed coat and seed coat, as well sets of serial sections encompassing the entire heart stage seed.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
Specimen part
View SamplesWe collected linear-cotyledon stage seed compartments from 5 to 7 micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments from seeds containing linear-coyledon-stage embryos. For the purposes of this study we captured 7 compartments: embyro proper, cellularized endosperm, chalazal endosperm, chalazal seed coat, general seed coat, whole seeds and micropylar endosperm.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
No sample metadata fields
View SamplesWe collected mature green seed compartments from 7 micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments from seeds containing mature green-stage embryos. For the purposes of this study we captured 6 compartments: embryo proper, micropylar endosperm, cellularized peripherial endosperm, chalazal endosperm, chalazal seed coat and seed coat, as well sets of serial sections encompassing the entire mature green stage seed.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
Specimen part
View SamplesWe collected pre-globular stage seed compartments from 7-micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments of seeds containing pre-globular-stage embryos was identified as those seeds containing embryo propers made up of between 2 and 8 cells. For the purposes of this study we captured 6 compartments: embyro proper, micropylar endosperm, peripheral endosperm, chalazal endosperm, chalazal seed coat and general seed coat. Serial sections of entire seeds were also captured for comparison.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
No sample metadata fields
View SamplesWe collected bending-cotyledon seed compartments from 7 micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments from seeds containing bending cotyledon stage embryos. For the purposes of this study we captured 6 compartments: embryo proper, mycropylar endosperm, cellularized peripherial endosperm, chalazal endosperm, chalazal seed coat and seed coat, in addition to serial sections encompasing the entire bending-cotyledon stage seed.
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.
Specimen part
View SamplesLasting B-cell persistence depends on survival signals that are transduced by cell surface receptors. Here, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia (CLL) cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase zeta (RPTP). We demonstrate that MK initiates a signaling cascade leading to B cell survival, by binding to RPTP. In mice lacking PTPRZ, the proportion and number of the mature B cell population is reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74 induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and CLL cells. Our results indicate that MK and RPTP are important regulators of the B cell repertoire. These findings could pave the way towards understanding the mechanisms shaping B cell survival, and suggest novel therapeutic strategies based on the blockade of the midkine/RPTP-dependent survival pathway.
The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74.
Age
View SamplesVaccine research today is focused on using safer, highly purified or recombinant antigens with poor immunogenicity, which has created a need for potent adjuvants. Rational design of effective and safe mucosal adjuvants for human use necessitates a thorough understanding of the mode of action of successful candidate adjuvants.
Unraveling molecular signatures of immunostimulatory adjuvants in the female genital tract through systems biology.
Sex, Treatment
View Samples