Most higher organisms, including plants and animals, have developed a time-keeping mechanism that allows them to anticipate daily fluctuations of environmental parameters such as light and temperature. This circadian clock efficiently coordinates plant growth and metabolism with respect to time-of-day by producing self-sustained rhythms of gene expression with an approximately 24-hour period. The importance of these rhythms has in fact been demonstrated in both phytoplankton and higher plants: organisms that have an internal clock period matched to the external environment possess a competitive advantage over those that do not.
The circadian clock regulates auxin signaling and responses in Arabidopsis.
No sample metadata fields
View SamplesTo identify the activity-induced gene expression programs in inhibitory and excitatory neurons, we analyzed RNA extracted from cultured E14 mouse MGE- and CTX-derived neurons (DIV 10) after these cultures were membrane-depolarized for 0, 1 and 6 hrs with 55mM extracellular KCl. To identify the gene programs regulated in these cells by the activity-induced early-response transcription factor Npas4, we repeated the same experiment in the MGE- and CTX-cultures lacking Npas4 (Npas4-KO).
Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.
Specimen part, Treatment, Time
View SamplesExpression profiling in hippocampal neurons to identify activity-regulated genes controlled by MEF2
Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.
No sample metadata fields
View SamplesExpression profiling in hippocampal neurons to identify genes upregulated in response to ectopic MEF2 activation by MEF2-VP16-ER
Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.
No sample metadata fields
View SamplesExpression profiling in whole rat forebrain in response to exposure of animals to a novel environment
Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.
No sample metadata fields
View SamplesPseudomonas aeruginosa (P. aeruginosa) lung infection is a significant cause of mortality in patients with cystic fibrosis (CF). Existing experimental data in our lab showed significantly different levels of virulence of "early" and "late" P. aeruginosa infection isolates in a C. elegans slow killing model. We wished to examine the expression profile of these isolates in order to explore genes that may be responsible for the observed differences. The expression profiles of two pairs of isolates (four isolates in total) were compared to each other using the Affymetrix P. aeruginosa PAO1 genome array, to gain insight into properties mediating virulence in these isolates. Data analysis was carried out using BIOCONDUCTOR software.
Modulation of gene expression by Pseudomonas aeruginosa during chronic infection in the adult cystic fibrosis lung.
No sample metadata fields
View SamplesDisruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain. Overall design: Total RNA-seq Data from the visual cortex of wild-type and MeCP2 knockout animals at 8-10 weeks of age
Disruption of DNA-methylation-dependent long gene repression in Rett syndrome.
No sample metadata fields
View SamplesThe hypocotyl of Arabidopsis seedlings shows rhythmic periods of elongation. The patterns of elongation are controlled by a combination of internal factors, such as the circadian clock, and external factors such as light. In a previous study we had found that two transcription factors, PIF4 and PIF5 are important integrators of clock and light signals for the control of elongation. Here we use microarrays to find genes that are correlated with elongation and that are controlled by PIF4 and/or PIF5.
Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.
No sample metadata fields
View SamplesHigh uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level, remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knock down of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium. Overall design: Puromycin-selected HUVEC (Human Umbilical Vein Endothelial Cells, Lonza, Switzerland) cells, expressing either scrambled control (SCR) or anti-EZH2 short-hairpin (shEZH2) constructs (at total 7 days after the first viral transduction), were used in FSS experiments (72h of control static culture or exposure to 20 dynes/cm2 of fluid shear stress, using Ibidi pump system (in µ-Slides I 0.4 Luer, Ibidi, Planegg/Martinsried, Germany)). Each replicate experiment consisted of viral transductions and puromycin selection of a separate HUVEC batch, followed by the FSS experiment. Two FSS experimental sets of the same HUVEC batch were run every time in parallel and lysed at the same end time point, one in RNAse-free conditions with RNA-Easy Mini Plus kit RLT Plus lysis buffer (QIAGEN, Venlo, The Netherlands), and one with RIPA buffer. The RIPA-lysates were analyzed with Western blotting and confirmed the complete (no protein present) knock-down of EZH2. From the RNA-lysates, RNA was isolated using the RNA-Easy Mini Plus kit (QIAGEN, Venlo, The Netherlands). High quality RNA samples (pre-assessed by Nanodrop measurements) were further processed in the Genome Analysis Facility of the University Medical Center Groningen. The RNA quality and integrity were verified using PerkinElmer Labchip GX with a cut-off value of 9 (scale 1 to 10, where 9 is very high quality RNA). RNA library was created in accordance with the TruSeqTM RNA Sample Preparation v2 Guide (Illumina, San Diego, CA, USA), using the PerkinElmer Sciclone liquid handler, resulting in 330bp cDNA fragments. The paired-end sequencing (100bp reads) was performed using the Illumina HiSeqTM 2500. (Quoted from the Materials and Methods of the related manuscript, with adjustments).
The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.
No sample metadata fields
View SamplesRNA-seq libraries purified from the visual cortices of neurons expressing Emx-, GAD2-, PV-, SST-, or VIP-Cre using the Ribotag allele. Seq libraries are provided from mice raised in standard housing, or housed in the dark for two weeks (dark-housed), or dark-housed and then exposed to light for 1, 3, or 7.5 hours. These seq libraries represent the genetic response of distinct types of cortical interneurons to altered sensory experience. Overall design: To explore how sensory experience affects gene expression, we examined this process in the visual cortex of adult mice that were housed in standard conditions, in complete darkness (i.e. dark-housed), or dark-housed and then exposed to light for increasing amounts of time. We generated mice that were heterozygous for alleles of either Emx-,Gad2-,Sst-,Vip- or Pv-Cre, and were also heterozygous for the Rpl22-HA (RiboTag) allele, which expresses an HA-tagged ribosomal protein specifically in Cre-expressing neurons. We performed RNA-Seq on RNA isolated from the dark-housed/light-exposed RiboTag-mice; Experiments were done in 3 biological replicates and the visual cortices of 3 mice were pooled per sample at each time-point and for each Cre line.
Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.
Age, Specimen part, Cell line, Subject
View Samples