The glomerular filtration barrier prevents large serum proteins from being lost into the urine. It is not known, however, why the filter does not routinely clog with large proteins that enter the glomerular basement membrane (GBM). Here we provide evidence that an active transport mechanism exists to remove immunoglobulins that accumulate at the filtration barrier. We found that FcRn, an IgG and albumin transport receptor, is expressed in podocytes and functions to internalize IgG from the GBM. Mice lacking FcRn accumulated IgG in the GBM as they aged and tracer studies showed delayed clearance of IgG from the kidneys of FcRn deficient mice. Supporting a role for this pathway in disease, saturating the clearance mechanism potentiated the pathogenicity of nephrotoxic sera. These studies support the idea that podocytes play an active role in removing proteins from the GBM and suggest that genetic or acquired impairment of the clearance machinery is likely to be a common mechanism promoting glomerular diseases.
Podocytes use FcRn to clear IgG from the glomerular basement membrane.
Specimen part
View SamplesWe analyzed the role of MOF in primary MEFs and differentiated podocytes in response to Adriamycin. Mof was deleted in MEFs using the Cre-ERT2 trasgene, while Mof was knockdown in podocytes using shRNA infection. Samples were treated with Adriamycin for 24 hours and gene expression changes analysed. Overall design: Analysis of gene expression changes upon Mof depletion in two cell lines, MEFs and podocytes, with and without Adriamycin
MOF maintains transcriptional programs regulating cellular stress response.
No sample metadata fields
View SamplesA doxycyline-inducible INS-1 insulinoma cell line expressing proinsulin (C96Y)-GFP was engineered. Addition of doxycyline causes the production of the proinsulin (C96Y)-GFP, which is retained in the endoplasmic reticulum. This study analyzes the gene expression changes that occur after doxycyline-induced expression of proinsulin (C96Y)-GFP for 24h, 48h and 5 days. Expression changes were compared between control un-induced cells and cells treated with doxycyline. Three replicates (experiments) were performed for each time point.
Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin.
Cell line
View Sampleswe investigated the effect of HFD on the transcriptome in the heads and bodies of male and female flies kept on either HFD or regular diet (RD). Using comprehensive genomic analyses which include high-throughput transcriptome sequencing, pathway enrichment and gene network analyses, we found that HFD induces a number of responses that are sexually dimorphic in nature. There was a robust transcriptional response consisting of a downregulation of stress-related genes in the heads and glycoside hydrolase activity genes in the bodies of males. In the females, the HFD led to an increased transcriptional change in lipid metabolism. Overall design: Examination of head and body of male and female Drosophila kept on High fat and regular diet.
High fat diet induces sex-specific differential gene expression in Drosophila melanogaster.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression.
Cell line
View SamplesThe HIV-1 accessory protein Vif hijacks a cellular
CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression.
Cell line
View SamplesPineal function follows a 24-hour schedule, dedicated to the conversion of night and day into a hormonal signal, melatonin. In mammals, 24-hour changes in pineal activity are controlled by a neural pathway that includes the central circadian oscillator in the suprachiasmatic nucleus and the superior cervical ganglia (SCG), which innervate the pineal gland. In this study, we have generated the first next-generation RNA sequencing evidence of neural control of the daily changes in the pineal transcriptome. We found over 3000 pineal transcripts that are differentially expressed (p <0.001) on a night/day basis (70% of these genes increase at night, 376 with fold change >4 or <1/4), the majority of which had not been previously identified as such. Nearly all night/day differences were eliminated by neonatal removal or decentralization of the SCG, confirming the importance of neural input for differential night/day changes in transcript abundance. In contrast, very few non-rhythmic genes showed evidence of changes in expression due to the surgical procedure itself, which is consistent with the hypothesis that post neonatal neural stimulation is not required for cell fate determination and maintenance of phenotype. Many of the transcripts that exhibit marked differential night/day expression exhibited similar changes in response to in vitro treatment with norepinephrine, the SCG neurotransmitter which mediates pineal regulation. Similar changes were also seen following treatment with an analog of the norepinephrine second messenger, cyclic AMP. Overall design: For the in vivo data, there were 8 biological conditions: day and night time points for each of four surgical groups: Control (Ctrl) Sham-surgery (Sham), Decentralized (DCN), and Ganglionectomized (SCGX). Samples were pooled into three biological replicates for each biological condition. For the in vitro data there were 3 biological conditions: Untreated control (CN), DBcAMP-treated (DB), and Norepinephrine-treated (NE). For the pineal enrichment comparison, three samples (i.e. no biological replicates) were used: pineal-day, pineal-night and mixed-tissue. For the mixed tissues sample, the following tissues from three rats sacrificed at ZT7 were used: cortex, cerebellum, midbrain, hypothalamus, hindbrain, spinal cord, retina, pituitary, heart, liver, lung, kidney, skeletal muscle, small intestine, adrenal gland. Total RNA was extracted from each tissue, and then equal amounts of each of the 15 tissues were combined for the final pooled sample.
Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.
No sample metadata fields
View SamplesIn a fluorescence polarization screen for MYC-MAX interaction, we have identified a novel small molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-overexpressing human cancer cells. Overall design: 4 treatment groups analyzed in triplicate: no treatment(control), 20uM KJ-Pyr-9, 0.1ug/mL doxycycline and KJ-Pyr-9 in combination with doxycycline
Inhibitor of MYC identified in a Kröhnke pyridine library.
No sample metadata fields
View SamplesGrowing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. Using this method, we generated hiPSC-derived astrocyte populations (hiPSC-astrocytes) from 42 NPC lines (derived from 30 individuals) with an average of ~90% S100ß-positive cells. Transcriptomic analysis demonstrated that the hiPSC-astrocytes are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our novel protocol is a reproducible, straightforward (single media) and rapid (<30 days) method to generate homogenous populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Overall design: 6 hiPSC-derived astrocyte lines were generated. Total RNA were extracted from these hiPSC-astrocytes as well as 2 primary astrocyte lines and analyzed by RNA sequencing.
An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.
Sex, Specimen part, Subject
View SamplesGene expression profiling has been performed on motor cortex and spinal cord homogenates and of sporadic ALS cases and controls, to identify genes and pathways differentially expressed in ALS. More recent studies have combined the use of laser capture microdissection (LCM) with gene expression profiling to isolate the motor neurons from the surrounding cells, such as microglia and astrocytes, in order to determine those genes differentially expressed in the vulnerable cell population i.e. motor neuron.
Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS).
Specimen part, Disease
View Samples