Purpose: The goals of this study are to compare transcriptome profiling (RNA-seq) resulting from the knockout of Hira in undifferentiated mouse embryonic stem cells (mESCs) and in day 15 differentiated cardiomyocytes.Methods: RNA extraction was done in duplicate from WT and Hira-null mESCs at day0 and day15 using TRIzol reagent. RNAseq was done onIllumina Nextseq500 and processed by the ICH genomics facility, reads were aligned and normalised using BOWTIE and DEseq R2 package. Gene lists were filtered using adjusted p-value = 0.05 and absolute fold change = 2. Results:We identified 1680 transcripts changed in the absence of HIRA in day 15 differentiated cardiomyocytes. GO term cardiovascular system development was the most downregulated gene set(p-value = 0.01 and FDR =0.1. Conclusion: this study analysis the role of HIRA in early cardiac mesoderm development usinf an invitro mESCs model. Overall design: mRNA profile of WT(control) and Hira-null (KO) undifferentiated mESCs and mESCs- derived cardiomyocytes at day15 were generated by deep sequencing in duplicates using Illumina Nextseq 500 platform.
HIRA directly targets the enhancers of selected cardiac transcription factors during in vitro differentiation of mouse embryonic stem cells.
Cell line, Subject
View SamplesIdentfification of MEF2A target genes using ChIP-exo and RNA-seq in skeletal muscle and primary cardiomyocytes. MEF2 plays a profound role in the regulation of transcription in cardiac and skeletal muscle lineages. To define the overlapping and unique MEF2A genomic targets, we utilized ChIP-exo analysis of cardiomyocytes and skeletal myoblasts. Of the 2783 and 1648 MEF2A binding peaks in skeletal myoblasts and cardiomyocytes, respectively, 294 common binding sites were identified. Genomic targets were compared to differentially expressed genes in RNA-seq analysis of MEF2A depleted myogenic cells. Overall design: The effect of MEF2A gene silencing on gene expression in myoblasts was assessed at 48 hr DM. Up and downregulated genes were then compared to MEF2A target genes identified in ChIP-exo analysis of 48 hr DM C2C12 myoblasts cells and primary cardiomyocytes.
Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling.
No sample metadata fields
View SamplesBasal airway epithelial cells (AEC) constitute stem/progenitor cells within the central airways and respond to mucosal injury in an ordered sequence of spreading, migration, proliferation, and dif-ferentiation to needed cell types. However, dynamic gene transcription in the early events after mucosal injury has not been studied in AEC. We examined gene expression using microarrays following mechanical injury (MI) in primary human AEC grown in submersion culture to generate basal cells and in the air-liquid interface to generate differentiated AEC (dAEC) that include goblet and ciliated cells. A select group of ~150 genes was in differential expression (DE) within 2 - 24 hr after MI, and enrichment analysis of these genes showed over-representation of functional categories related to inflammatory cytokines and chemokines. Network-based gene prioritization and network reconstruction using the PINTA heat kernel diffusion algorithm demonstrated highly connected networks that were richer in differentiated AEC compared to basal cells. Similar ex-periments done in basal AEC collected from asthmatic donor lungs demonstrated substantial changes in DE genes and functional categories related to inflammation compared to basal AEC from normal donors. In dAEC, similar but more modest differences were observed. We demon-strate that the AEC transcription signature after MI identifies genes and pathways that are im-portant to the initiation and perpetuation of airway mucosal inflammation. Gene expression oc-curs quickly after injury and is more profound in differentiated AEC, and is altered in AEC from asthmatic airways. Our data suggest that the early response to injury is substantially different in asthmatic airways, particularly in basal airway epithelial cells.
Chemokine expression in the early response to injury in human airway epithelial cells.
Specimen part
View SamplesCancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in Acute Myeloid Leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that “non-mutated” splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This led to the identification of the splicing regulator RBM25 as a novel tumor suppressor, and down-regulation of RBM25 increased proliferation and decreased apoptosis in human leukemic cell lines. Mechanistically, we could show that RBM25 controlled the splicing of key genes, including those encoding the apoptotic regulator BCL-x and the MYC inhibitor BIN1. Specifically, we demonstrated that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels. This mechanism also appears to be operative in human AML patients where RBM25 levels correlative inversely with MYC activity and clinical outcome. Overall design: Examined transcriptome from U937 cells in biological triplicates.
The splicing factor RBM25 controls MYC activity in acute myeloid leukemia.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A mouse model of conditional lipodystrophy.
Sex, Age, Specimen part
View SamplesHepatocellular carcinoma (HCC) is a highly prevalent and deadly disease world-wide. The survival of HCC patients is usually very poor due to the lack of efficient anti-cancer drugs
Synthesis and bio-molecular study of (+)-N-Acetyl-α-amino acid dehydroabietylamine derivative for the selective therapy of hepatocellular carcinoma.
Cell line, Treatment
View SamplesExercise enhances cognitive function and slows progressive neurodegenerative disease. While exercise promotes neurogenesis, oligodendrogenesis and adaptive myelination are also significant contributors to brain repair and brain health. Nonetheless, the molecular details underlying these effects remain poorly understood. Conditional ablation of the Snf2h gene (Snf2h cKO) impairs cerebellar development producing mice with poor motor function, progressive ataxia and death between postnatal day 25 to 45. Here we show that voluntary running induced an endogenous brain repair mechanism that resulted in a striking increase in hindbrain myelination and the long-term survival of Snf2h cKO mice. Further experiments identified the VGF growth factor as a major driver underlying this effect. VGF neuropeptides could promote oligodendrogenesis in vitro, while Snf2h cKO mice treated with full-length VGF-encoding adenoviruses obliterated the requirement of exercise for survival. Together, these results suggest that VGF delivery could represent a therapeutic strategy for cerebellar ataxia and other pathologies of the central nervous system. Overall design: 4 samples per genotype in biological replicates (8 paired-end libraries)
Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice.
Sex, Specimen part, Cell line, Subject
View SamplesIdentifying gene expression changes in adipose tissue of lipodystrophic aP2-nSREBP1c trangenic mice
A mouse model of conditional lipodystrophy.
Sex, Age, Specimen part
View SamplesIdentifying gene expression changes in adipose tissue of lipodystrophic Pparg<ldi/+> targeted mice
A mouse model of conditional lipodystrophy.
Sex, Age, Specimen part
View SamplesA dataset for coordinated transcriptome analysis of the effect of ethanol on human embryonic cerebral slices in vitro and on the mouse embryonic cerebral cortex in a in vivo model.
Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol.
Time
View Samples