The goal of this study was to generate a Drosophila model of intellectual disability caused by mutations in kdm5. RNA-seq was used to define the transcriptional defects of a mutation in Drosophila that is analogous to a human intellectual disability-associated allele, kdm5[A512p]. These data revealed a total of 1609 dysregulated genes, 778 of which were upregulated and 831 were downregulated. To determine whether these transcriptional defects were due to the loss of KDM5-induced histone demethylation, we also carried out RNA-seq from a enzymatic inactive strain, kdm5[Jmjc*]. These data revealed a striking similarity between the two datasets and suggest that the primary defect of KDM5[A512P] is loss of histone demethylase activity. Overall design: 3-5 day old adult heads from wildtype, kdm5[A512P] and kdm5[JmjC*] were used to generate RNA that was subsequently subjected to deep sequencing.
A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5.
Specimen part, Subject
View SamplesAccumulated evidences suggest physiological relevance between the transcription factor NRF3 (NFE2L3) and cancers. However NRF3 target genes in cancer cells remain poorly understood.
Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation.
Specimen part, Cell line
View SamplesKRAS mutation is present in about 30% of human lung adenocarcinomas. While recent advances in targeted therapy have shown great promise, KRAS remains undruggable and concurrent alterations in tumor suppressors render KRAS mutant tumors even more resistant to existing therapies. Contributing to the refractoriness of KRAS mutant tumors harboring these co-mutations are immunosuppressive mechanisms such as increased presence of suppressive Tregs in tumors and elevated expression of the inhibitory receptor PD-1 on tumor-infiltrating T cells. BET bromodomain inhibitors demonstrate clinical benefit in hematologic malignancies, and prior reports demonstrate their Treg-disruptive effects in a NSCLC model. Targeting PD-1 inhibitory signals through anti-PD-1 antibody blockade has also shown substantial therapeutic impact in lung cancer although these outcomes are still limited to a minor pool of patients. We therefore hypothesized that the BET bromodomain inhibitor JQ1 would synergize with PD-1 blockade to promote robust anti-tumor response in lung cancer. In the present study, using Kras+/LSL-G12D; Trp53L/L (KP) mouse models of non-small cell lung cancer, we identified cooperative effects between JQ1 and anti-PD-1 antibody that included reduced numbers of tumor-infiltrating Tregs and enhanced activation of tumor-infiltrating T cells, which exhibited a Th1 cytokine profile that favored their demonstrated improved effector function. Furthermore, lung-tumor-bearing mice under this combinatorial treatment regimen showed robust and long-lasting anti-tumor responses compared to either agent alone, culminating in substantial improvement in the survival of treated mice. Thus, combining BET bromodomain inhibition with immune checkpoint blockade offers a promising therapeutic approach for solid malignancies such as lung adenocarcinoma. Overall design: Gene expression analyses of tumor nodules in lung tumor-bearing mice treated with Vehicle (control), JQ1 (Bromodomain inhibitor) and/or anti-PD-1 antibody
BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in <i>Kras</i>-Mutant Non-Small Cell Lung Cancer.
Specimen part, Cell line, Treatment, Subject
View SamplesEGFR inhibitors (EGFRi) are effective against EGFR mutant lung cancers. The efficacy of these drugs however is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, T790M. We recently demonstrated that T790M can arise de novo during treatment (Hata et al., Nature Medicine 2016); it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells (referred to as drug tolerant cells (DTCs)) prior to acquiring secondary mutations like T790M. We have developed DTCs to EGFRi in EGFR mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays. Based on these results, we tested the ability of MCL-1 BH3 mimetics to combine with EGFR inhibitors to eliminate DTCs and shrink EGFR mutant lung cancer tumors in vivo. Overall design: The NSCLC cell line PC9 was made tolerant to gefitinib over 6-days. Replicates were performed at a minimum of duplicates. EGFR inhibitors (EGFRi) are effective against EGFR mutant lung cancers. The efficacy of these drugs however is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, T790M. We recently demonstrated that T790M can arise de novo during treatment (Hata et al., Nature Medicine 2016); it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells (referred to as drug tolerant cells (DTCs)) prior to acquiring secondary mutations like T790M. We have developed DTCs to EGFRi in EGFR mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays. Based on these results, we tested the ability of MCL-1 BH3 mimetics to combine with EGFR inhibitors to eliminate DTCs and shrink EGFR mutant lung cancer tumors in vivo.
Increased Synthesis of MCL-1 Protein Underlies Initial Survival of <i>EGFR</i>-Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target.
Specimen part, Cell line, Subject
View SamplesExpression data from HT-29 human colon adenocarcinoma cells treated with IFN- for 24 hr
Simultaneous profiling of 194 distinct receptor transcripts in human cells.
Specimen part, Cell line
View SamplesExpression data from HT-29 cells treated with IFN- for 24 hr, MCF10A cells, and MDA-MB-436 cells.
Simultaneous profiling of 194 distinct receptor transcripts in human cells.
Specimen part, Cell line
View SamplesAs a starting point for dissecting the cellular heterogeneity of gliomas, different subpopulations from a CRISPR mouse model of glioma were profiled for gene expression. Because we initially identified these astrocyte subpopulations in the mouse brain, we first sought to determine whether their malignant analogues are present in mouse models of glioma. Towards this, we recently developed a mouse model of malignant glioma, one that utilizes E16.5 IUE approaches in combination with CRISPR mediated gene editing, where we use IUE to introduce gRNA vectors to delete NFI, PTEN, and p53, CAS9, and a GFP reporter, resulting in the generation of malignant glioma at P70. Using the GFP label to distinguish tumor from normal brain tissue, along with FACS-based selection against the glioma stem cell (GSC) and endothelial cells (see methods), we screened our tumor models for the presence of these prospective astroglial populations in the non-GSC fractions of these tumors. Overall design: Gene expression profiles (by RNA-seq) were taken of mouse glioma cells of three different populations.
Identification of diverse astrocyte populations and their malignant analogs.
Specimen part, Subject
View SamplesWe observed that mutations in CBP60a, CML46, CML47 and WRKY70 enhanced plant resistance to Pma likely through different mechanisms. To investigate their contributions to enhanced resistance at the transcriptome level, we designed this experiment to measure their response to Pma using the SMART-3Seq method. Overall design: Mature leaves of Arabidopsis plants of seven different genotypes were infiltrated with mock or Pma. Samples were collected 24 hours after treatment. Each experiment contains one sample consisted of two leaves for each genotype-treatment combination. In total three independent experiments were conducted.
WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.
Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View Samples