Dazl (deleted in azoospermia like) is a member of the DAZ family of germ cell-restricted RNA binding proteins required for gametogenesis from worm to human. The direct RNA targets and functions of these essential proteins are poorly understood. Here, we generated high-resolution, transcriptome-wide maps of Dazl-RNA interactions in mouse testes. These maps provide important insights into the mechanism of Dazl recruitment to mRNA and reveal Dazl binding to thousands of mRNAs predominantly through sequence-specific interactions near the polyA tail. Using transgenic mice and fluorescence activated cell sorting (FACS), we isolated DAZL knockout germ cells and used RNA-Seq to identify mRNAs sensitive to DAZL-ablation. Intersecting the RNA-Seq and Dazl-RNA interaction datasets revealed that Dazl enhances expression of a subset of directly-bound transcripts, namely mRNAs for a network of essential cell cycle regulatory genes. Collectively, our integrative analysis delineates a Dazl-dependent post-transcriptional gene regulatory program essential for mammalian germ cell maintenance. Overall design: PolyA Seq libraries generated from isolated spermatogonial cells
DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions.
Sex, Specimen part, Cell line, Subject
View SamplesBACKGROUND & AIMS- More frequent interaction of bacteria with the colonic epithelium is associated with ulcerative colitis (UC). The identities of all proteins which promote bacterial clearance in colonic epithelial cells are unknown. Previously, we discovered that dCAP-D3 (Chromosome Associated Protein-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS- Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing CAP-D3 shRNA. CAP-D3 levels in colonic epithelial cells from healthy and UC patient tissues were analyzed by immunoblot. RNA-sequencing identified bacterially-induced CAP-D3 target genes. The role of CAP-D3 target genes in bacterial clearance was analyzed by gentamycin protection assays, immunofluorescent staining, and by using pharmacologic inhibitors. RESULTS- CAP-D3 expression was reduced in colonic epithelial cells from UC patients with active disease. Reduction of CAP-D3 expression inhibited autophagy and decreased intracellular bacterial clearance. The components of the heterodimeric SLC7A5/SLC3A2 amino acid transporter were identified as CAP-D3 target genes; their levels increased in infected, CAP-D3 deficient cell lines and in cells from UC patients. In HT-29 cells, this resulted in earlier SLC7A5 recruitment to Salmonella-containing vacuoles, increased mTOR activity, and enhanced bacterial survival. Inhibition of SLC7A5/SLC3A2 or mTOR activity rescued the bacterial clearance defect in CAP-D3 deficient cells. CONCLUSIONS- CAP-D3 attenuates amino acid transporter transcription to promote bacterial autophagy in colon epithelial cells. CAP-D3 protein levels are decreased in patients with active UC, suggesting that CAP-D3 is a potential therapeutic target to restore mucosal homeostasis in UC patients. Overall design: Three RNA samples from 3 independent experiments including timepoints taken at 0, 0.5 and 7 hours post-infection were analyzed on a bioanalyzer for quality; one of the 0.5 hour post-infection samples was excluded at this time due to poor RNA purity. Directional, cDNA libraries made from cellular mRNAs were generated from the other 8 samples and sequenced (paired-end sequencing of 100 bp reads) in the Genomics Core at the University of Chicago on an Illumina HiSeq2000.
Chromosome-associated protein D3 promotes bacterial clearance in human intestinal epithelial cells by repressing expression of amino acid transporters.
No sample metadata fields
View SamplesThe canonical Wnt pathway plays a central role in stem cell maintenance, differentiation and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/ß-catenin transcriptional complex is the primary transforming factor in colorectal cancer. Despite significant recent inroads, the full complement of Wnt target genes and the mechanisms of regulation remain incompletely understood. Here we identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/ß-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its close neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/ß-catenin to mediate the juxtaposition/physical contact of its own promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 expression. This feedforward regulatory loop controls stem cell-related gene expression and is highly amplified in colorectal cancer. Overall design: Derivatives of Ls174T colon cancer cells, overexpressing the Tet repressor were used for the construction of inducible overexpressing a shRNA against the WiNTRLINC1 long non coding RNA upon treatment with doxyxycline. siRNAs against WiNTRLINC1 were designed with the siDesign center tool from Dharmacon and their sequences were used for the construction of the shRNA stem loop structure as described in EMBO Rep. 2003 Jun;4(6):609-15. The modified pTER vector was used as a backbone for constructing the shRNA cassette as described in EMBO Rep. 2003 Jun;4(6):609-15. Positive cell clones were screened with RT-PCR in order to validate the efficiency of the knockdown of WiNTRLINC1. The Ls174T derivative cell line inducibly overexpressing a shRNA against ASCL2 has been described previously in Cell. 2009 Mar 6;136(5):903-12. RNA deep sequencing was performed in the WiNTRLINC1 KD and ASCL2 KD cells compared to controls cells in order to detect changes in gene expression due to the loss of either WiNTRLINC1 or ASCL2.
A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate.
No sample metadata fields
View SamplesThecal tissue forms a layer around the follicle just prior to antral stage and grows with the follicle (containing an oocyte) as it matures. The innermost component (theca interna) supplies hormones and other factors necessary to the growth and development of the granulosa and oocyte. Most follicles regress and die (become atretic) at the antral stage, and this process as well as development of the follicle are undoubtedly influenced by the theca.
Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles.
Specimen part
View SamplesThe growth of the mammalian ovarian follicle requires the formation of a fluid filled antrum, and maturation and differentiation of the ovarian granulosa cells, largely under the control of Follicle Stimulating Hormone (FSH). Many follicles will regress and die by a process called atresia at this early antral stage. We therefore decided to analyse the gene expression profiles of granulosa cells cultured in the presence or absence of FSH and Tumour Necrosis Factor-alpha (TNF), an apoptotic factor, to simulate the key influences. Different concentratons of FSH and TNFa in granulosa culture were used to determine effective conditions via estradiol and progesterone production, and cell number.
The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells.
Specimen part, Treatment
View SamplesWe observed that mutations in CBP60a, CML46, CML47 and WRKY70 enhanced plant resistance to Pma likely through different mechanisms. To investigate their contributions to enhanced resistance at the transcriptome level, we designed this experiment to measure their response to Pma using the SMART-3Seq method. Overall design: Mature leaves of Arabidopsis plants of seven different genotypes were infiltrated with mock or Pma. Samples were collected 24 hours after treatment. Each experiment contains one sample consisted of two leaves for each genotype-treatment combination. In total three independent experiments were conducted.
WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.
Treatment, Subject
View SamplesGranulosa cells mature and die as ovarian follicles enlarge and die (undergo atresia) under the influence of hormones and intrafollicular factors. Later in follicular development, a fluid-filled antrum is formed, a process which is accompanied by a high rate of atresia. These small antral follicles (5 mm or less in diameter in the cow) contain granulosa of 2 different phenotypes, rounded or columnar, whereas follicles larger than 5 mm have the rounded phenotype only. Prior to ovulation, in larger follicles greater than 10 mm in size, the granulosa begin to migrate and differentiate in preparation for oocyte release and formation of the corpus luteum.
Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia.
Specimen part
View SamplesThe ovary has specialized stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterize the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6).
Transcriptome analyses of ovarian stroma: tunica albuginea, interstitium and theca interna.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesVisceral leishmaniasis (VL), caused by Leishmania spp protozoan parasites, can provoke overwhelming and protracted epidemics, with high casefatality rates. Despite extensive efforts towards the development of an effective prophylactic vaccine, no promising vaccine is available yet for humans. Multi-epitope peptide based vaccine development is manifesting as the new era of vaccination strategies against VL. Aim of the study was the design of chimeric peptides from immunogenic L. infantum proteins for encapsulation in PLGA nanoparticles (NPs) alone or in combination with MPLA adjuvant, or in PLGA NPs surface modified with an octapeptide mimicking TNF-alpha for DCs targeting, in order to construct a peptide-based nanovaccine. The in vitro evaluation of the above nanoformulations was performed in DCs isolated from HLA-A2.1 transgenic mice. Characterization of DCs transcriptional responses to these vaccine candidates via microarrays could improve our understanding of their mechanisms of action on DCs' functional differentiation and the type of adaptive immunity subsequently induced.
A Poly(Lactic-<i>co</i>-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different <i>Leishmania infantum</i> Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8<sup>+</sup> T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.
Specimen part
View Samples