Transcripomic analysis of leaf gene expression in S and N-deficient winter wheat during grain development. Tissue was harvested at anthesis and 7, 14 and 21 days post anthesis from experimental field plots.
Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesThe cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesmiR-34c inhibits Dicer/Pten double knockout mouse serous epithelial cancer cell proliferation by inducing cell cycle arrest and apoptosis. We found that miR-34c had a more dramatic effect on inhibiting tumor cell viability than let-7b. The action of miR-34c induced tumor cell cycle arrest in G1 phase and apoptosis and was accompanied with the regulation of key genes involved in cell proliferation and cell cycle G1/S transition. miR-34c suppressed the expression of EZH2 and MYBL2, which may transcriptionally and functionally activate CDKN1C.
Functional analysis of miR-34c as a putative tumor suppressor in high-grade serous ovarian cancer.
Cell line
View SamplesThe cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesIt has been postulated that during human fetal development all cells of the lung epithelium derive from an embryonic endodermal NKX2-1+ precursor, however, this hypothesis has not been formally tested due to an inability to purify or track this theorized cell for detailed characterization. Here we engineer and developmentally differentiate NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate a human primordial lung progenitor that expresses NKX2-1 but is initially devoid of markers of differentiated lung lineages. As these progenitors move through the earliest moments of lung lineage specification from definitive endoderm they can be imaged in real time or isolated for time-series global transcriptomic profiling. We performed microarray analysis of 5 timepoints of human iPSC to lung directed differentiation compared to week 21 human fetal lung and Neural NKX2-1+ cell controls. These profiles indicate that evolutionarily conserved, stage-dependent developmental gene signatures are expressed in primordial human lung progenitors.
Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling.
Time
View SamplesPurpose: To identify the impact of 2''-FL supplementation on adaptive response following extensive intestinal resection. Methods: Transcriptomic profiles were obtained from mice undergoing ileocecal recection (8-10 week old male mice) and again at 8 weeks post-surgery. At the time of resection and again at 8 weeks post-op, small bowel samples were obtained from treatment and control animals and submitted for mRNA profiling. During these 8 weeks treatment animals (n=3) received 2''-FL supplementationion while controls (n=3) received only standard diet. Results: We observe enrichment in genes and pathways related to anti-microbial peptides, metabolism, and energy processing. Supplementation of 2''-FL increases energy availability and enhances the adaptive response. Overall design: Male C57BL/6 mice at 8 to 10 weeks of age were submitted to ileocecal recection. Following resection, half were supplemented with 2''-FL for 8 weeks; small bowels were obtained and submitted for mRNA profiling,
The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal.
Sex, Specimen part, Cell line, Subject
View SamplesPIP3 is synthesized by PI3Ks and regulates complex cell responses, such as growth and migration. Signals that drive long-term reshaping of cell phenotypes are difficult to resolve because of complex feedback networks that operate over extended times. It is clear PIP3-dependent modulation of mRNA accumulation is important in this process but is poorly understood. We have quantified the genome-wide mRNA-landscape of non-transformed, breast epithelium-derived MCF10a cells and its response to transient (EGF or PI3Ka-selective inhibitor) or chronic (isogenic cells expressing an oncomutant PI3Ka allele or lacking the PIP3-phosphatase /tumour-suppressor, PTEN) perturbations of PIP3.These results show that whilst many mRNAs are changed by long-term genetic perturbation of PIP3 signaling (“butterfly effect”), a much smaller number change with a directional logic that aligns with different PIP3 perturbations, allowing discrimination of more directly regulated mRNAs. Our results also indicate that mRNAs can be differentially sensitive to specific features of PIP3 signals, that PIP3-sensitive mRNAs encode PI3K pathway components and identify the transcription factor binding motifs SRF and PRDM1 as important regulators of PIP3-sensitive mRNAs involved in cell movement. Overall design: RNA-seq on WT MCF10a, treated or not with A66 (Pi3Kalpha inhibitor), PIK3CA H1047R MCF10a and PTEN KO MCF10a. EGF time course stimulation applied (0, 15, 40, 90, 180, 300 min). A66 no EGF when A66 was applied for 300min w/o EGF simulation. All samples made in triplicate. Total of 75 samples.
Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop.
No sample metadata fields
View SamplesEndometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we carried out transcriptome:microRNAome analysis of endometriomas and eutopic endometrium, using gene expression arrays and next generation small RNA sequencing technology.
Functional microRNA involved in endometriosis.
Disease, Disease stage, Subject
View SamplesOver the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.
HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs.
Specimen part, Cell line, Treatment
View Samples