Provides a set of enriched normal colon epithelial cells to use as a baseline for disease of the colon
Normal colon epithelium: a dataset for the analysis of gene expression and alternative splicing events in colon disease.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast.
Specimen part, Subject
View SamplesIntroduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes.
Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast.
Specimen part, Subject
View SamplesInhibition of the nonsense mediated decay (NMD) mechanism in cells results in stabilization of transcripts carrying premature translation termination codons. A strategy referred to as gene indentification by NMD inhibition (GINI) has been proposed to identify genes carrying nonsense mutations (Noensie & Dietz, 2001). Genes containing frameshift mutations in colon cancer cell line have been identifying mutatnt genes using GINI, we have now further improved the strategy. In this approach, inhibition of NMD with emetine is complemented with inhibiting NMD by blocking the phosphorylation of the hUpf1 protein with caffeine. In addition, to enhance the GINI strategy, comparing mRNA level alterations produced by inhibiting transcription alone or inhbiiting transcription together with NMD following caffeine pretreatment were used for the efficient identification of false positives produced as a result of stress response to NMD inhibition. To demonstrate the improved efficiency of this approach, we analyzed colon cancer cell lines showing microstellite instability. Bi-allelic inactivating mutations were found in the FXR1, SEC1L1, NCOR1, BAT3, PHD14, ZNF294, C190ORF5 genes as well as genes coding for proteins with yet unknown functions.
Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part, Cell line
View SamplesIn this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part, Cell line
View SamplesIn this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part
View SamplesThe MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, raising the possibility that MYB may be a therapeutic target. However realization of this potential requires (i) a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis; and (ii) an approach for developing an effective therapeutic. We previously showed that the interaction of Myb with the coactivator CBP/p300 is essential for its transforming activity. Here we use hematopoietic cells from the Booreana mouse strain, which carries a mutation in Myb that prevents interaction with CBP/p300, to examine the requirement for this interaction in myeloid transformation and leukemogenesis. Using this strain and a strain (plt6) carrying a complementary mutation in p300, we show that the Myb-p300 interaction is essential for in vitro transformation by the myeloid leukemia oncogenes AML1-ETO, AML1-ETO9a, MLL-ENL, and MLL-AF9. We further show that unlike cells from wild-type (WT) mice, Booreana cells fail to induce leukemia upon transplantation into irradiated recipients following transduction with an AML1-ETO9a retrovirus. These data highlight disruption of the Myb-p300 interaction as a potential therapeutic strategy for AML and suggest that such a strategy would have a useable therapeutic index since Booreana mice, unlike Myb null mice, are viable. Finally we have begun to explore the molecular basis of the these observations by gene expression profiling; this highlighted several genes previously implicated in myeloid leukemogenesis as being differentially expressed between WT and Booreana cells transduced with AML1-ETO9a.
Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes.
Specimen part
View SamplesMedulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s) of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options.
Gene expression analyses of the spatio-temporal relationships of human medulloblastoma subgroups during early human neurogenesis.
Sex, Age
View SamplesKMS-11 and KMS-34 cells were exposed to stepwise increasing concentrations of carfilzomib over a period of 18 weeks: cells adapted to growth in 4 nM carfilzomib by 4 weeks, in 6 nM in another 6 weeks and in 12 nM after a further 8 weeks. The resulting cell cultures, denoted KMS-11/Cfz and KMS-34/Cfz, respectively, retained resistance to carfilzomib even when tested after removal of selective pressure for approximately 8 weeks.
KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models.
Specimen part, Cell line
View Samples