Cancer cell phenotypes are partially determined by epigenetic specifications such as DNA methylation. Metastasis development is a late event in cancerogenesis and might be associated with epigenetic alterations. Here, we analyzed genome wide DNA methylation changes that were associated with pro-metastatic phenotypes in non-small cell lung cancer with Reduced Representation Bisulfite Sequencing. DNMT-inhibition by 5-Azacytidine at low concentrations reverted the pro-metastatic phenotype. 5-Azacytidine led to preferential loss of DNA methylation at sites that were DNA hypermethylated during the in vivo selection. Changes in DNA methylation persisted over time.
DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes.
Cell line
View SamplesHere, we analyzed global gene expression changes that were associated with pro-metastatic phenotypes in non-small cell lung cancer using the Affymetrix microarray platform.
DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Increased DNA methylation of Dnmt3b targets impairs leukemogenesis.
Specimen part
View SamplesHere, we analyzed global gene expression changes that were associated with over expression of Dnmt3b in MLL-AF9 induced leukemias using the Affymetrix microarray platform.
Increased DNA methylation of Dnmt3b targets impairs leukemogenesis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia.
Cell line, Treatment
View SamplesAll-trans-retinoic acid (ATRA) has been successfully used in therapy of acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML) but the response of non-APL AML cases to ATRA-based treatment has been poor. Here we show that, via epigenetic reprogramming, inhibitors of LSD1/KDM1 demethylase including tranylcypromine (TCP) unlocked the ATRA-driven therapeutic response in non-APL AML. LSD1 inhibition did not lead to an increase in genome-wide H3 lysine4 dimethylation (H3K4me2) but did increase H3K4me2 and expression of myeloid differentiation-associated genes. Importantly, treatment with ATRA plus TCP dramatically diminished engraftment of primary human AML cells in vivo in NOD.SCID mice, suggesting that ATRA in combination with TCP may target leukemia-initiating cells. Furthermore, initiation of ATRA plus TCP co-treatment 15 days post-engraftment of human AML cells in NOD.SCID gamma mice also revealed the ATRA plus TCP drug combination to have a potent anti-leukemic effect, which was superior to treatment with either drug alone. These data identify LSD1 as a therapeutic target and strongly suggest that it may contribute to AML pathogenesis by inhibiting the normal pro-differentiative function of ATRA, paving the way for novel combinatorial therapies of AML.
Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia.
Cell line, Treatment
View SamplesIncreased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood. To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila.
Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features.
Specimen part, Cell line
View SamplesWe used a whole genome approach to identify major functional gene categories (including xenobiotic transporters and metabolizing enzymes) whose expression depends on gestational age. STUDY DESIGN: We compared gene expression profiles of 1st (45-59 days) and 2nd trimester (109-115 days), and C-section term placentae. RESULTS: In 1st trimester placentae, genes related to cell cycle, DNA, aminoacids and carbohydrate metabolism were significantly overrepresented, while genes related to signal transduction were downregulated. In the organism defense category, we identified genes involved in chemical response, metabolism, and transport. Analysis of signal transduction pathways suggested, and subsequently confirmed independently, that the Wnt pathway was regulated by gestational age. CONCLUSIONS: Our study will serve as a reference database to gain insight into the regulation of gene expression in the developing placentae and, thus, allow comparisons with placentae from complicated pregnancies such as those in women experiencing gestational diabetes, pre-eclampsia and teratogenic sequelae.
Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study.
No sample metadata fields
View SamplesKnowing the gene expression profiles of drug-metabolizing enzymes and transporters throughout gestation is important for understanding the mechanisms of pregnancy-induced changes in drug pharmacokinetics. In this study, we compared gene expression of drug-metabolizing enzymes and transporters in the maternal liver, kidney, small intestine, and placenta of pregnant mice throughout gestation by microarray analysis. Specifically, we investigated cytochrome P450 (Cyp), UDP-glucuronosyltranserase (Ugt), and sulfotransferase (Sult), as well as ATP-binding cassette (Abc) and solute carrier (Slc) transporters. We found that relatively few Ugt and Sult genes were impacted by pregnancy in maternal tissues and placenta. Cyp1a2, most Cyp2 isoforms, Cyp3a11, and Cyp3a13 in the liver were down-regulated, with the greatest changes occurring on gestation days (gd) 15 and 19 compared to non-pregnant controls (gd 0). However, Cyp2d40, Cyp3a16, Cyp3a41a, Cyp3a41b, and Cyp3a44 in the liver were induced throughout pregnancy. Cyp expression in mid-gestation placenta (gd 10 and 15) was generally greater than that in term placenta (gd 19). There were also notable changes in Abc and Slc transporters. Abcc3 in the liver was down-regulated by 60%, and Abcb1a, Abcc4, and Slco4c1 in the kidney were down-regulated by 30-60% on gd 15 and 19 versus gd 0. Abcc5 in the placenta was induced 3-fold on gd 10 versus gd 15 and 19, whereas Slc22a3 expression in the placenta on gd 10 was 90% lower than that on gd 15 and 19. Overall, this study demonstrates important gestational age-dependent expression of drug-metabolizing enzymes and transporter genes, which may have mechanistic relevance to human pregnancy.
Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice.
Specimen part
View Samples