This SuperSeries is composed of the SubSeries listed below.
Role of p53 serine 46 in p53 target gene regulation.
Specimen part, Cell line, Compound
View SamplesThe tumor suppressor p53 plays a crucial role in cellular growth control inducing a plethora of cellular response pathways. The molecular mechanisms that discriminate between the distinct p53-responses towards different stress treatments have remained largely elusive. Here, we have analyzed the p53-regulated pathways induced by two chemotherapeutical treatments, Actinomycin D inducing growth arrest and Etoposide resulting in apoptosis. We found that the genome-wide p53-binding patterns are almost identical upon both treatments notwithstanding transcriptional differences that we observed in genome-wide transcriptome analysis. To assess the role of post-translational modifications in target gene choice and activation we investigated the extent of phosphorylation of Serine 46 of p53 bound to DNA (p53-pS46), a modification that has been linked to apoptosis-pathways, and the extent of phosphorylation of Serine 15 (p53-pS15), a general p53-activation mark. Interestingly, the overall extent of S46 phosphorylation of p53 bound to DNA is considerably higher in cells directed towards apoptosis while the degree of phosphorylation at S15 of DNA bound p53 remains highly similar upon both treatments. Moreover, our data suggest that, following different chemotherapeutical treatments, the extent of chromatin-associated p53 phosphorylated at S46 but not at pS15 is higher on certain apoptosis related target genes, including the BAX and PUMA genes. These data provide evidence that cell fate decisions are not made primarily on the level of general p53 DNA-binding, but possibly through post-translational modifications of chromatin bound p53.
Role of p53 serine 46 in p53 target gene regulation.
Specimen part, Cell line
View SamplesGene expression profiling (GEP) can reveal characteristic signatures associated with distinct biologic subtypes of acute lymphoblastic leukemia (ALL).
Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles.
Specimen part, Disease
View SamplesPatients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 35 non-Down syndrome (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression, and methylation analyses. We report novel deletions within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 12 DS (24%) and only a single NDS case (3%) (Fishers exact p = 0.013). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters, and enrichment of highly methylated genes for specific pathways and transcription factor binding motifs. Gene expression profiling identified CRLF2 overexpression in nearly half DS-ALL cases, and supervised analysis identified an associated 39-gene signature. However, no expression signature was identified for DS-ALL overall, nor for histone status, suggesting that DS-ALL constitutes several, heterogeneous molecular entities. Characterization of pathways associated with histone deletions and high CRLF2 expression may identify opportunities for novel targeted interventions.
Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles.
No sample metadata fields
View SamplesWe report the effects of silencing SRSF1 or ZMAT2 in human epidermal stem cells on the transcriptome of epidermal stem cells. We found that silencing ZMAT2 or SRSF1 affects global splicing, however, ZMAT2 seems to regulate splicing of a smaller more specific subset of genes. Overall design: RNA-sequencing data following silencing SRSF1 or ZMAT2
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.
Specimen part, Subject, Time
View SamplesWe report the effects of induction of differentiation in human epidermal stem cells on the splicing of the transcriptome. Overall design: RNA-sequencing data following induction of differentiation in human epidermal stem cells
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.
Specimen part, Treatment, Subject
View SamplesEffects of the pan-anti-apoptotic BCL-2 family small molecule inhibitor, obatoclax mesylate (GeminX Pharmaceuticals), on gene expression were evaluated by microarray analysis in order to gain insights into the killing mechanism by this compound in two human MLL-AF4 cell lines. The results of the gene expression profiling substantiated other lines of evidence derived from genetic and chemical cell death pathway inhibition, Western blot analysis, flow cytometric apoptosis assays, and electron microscopic analyses, showing triple apoptosis, autophagy, and necroptosis death pathway activation by this agent. The results also demonstrated modulation of a number of novel targets of obatoclax encoding various cell death factors at the gene expression level.
Potent obatoclax cytotoxicity and activation of triple death mode killing across infant acute lymphoblastic leukemia.
Cell line
View SamplesGene expression profiling was performed on 97 cases of infant ALL from Children's Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.
Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study.
Sex, Age, Specimen part, Treatment, Race
View SamplesInsulin resistance represents a hallmark during the development of type 2 diabetes mellitus (T2D) and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism 1,2,3. MicroRNA (miR)-dependent posttranscriptional gene silencing has recently been recognized to control gene expression in disease development and progression including that of insulin-resistant T2D. MiRs, whose deregulation alters hepatic insulin sensitivity include miR-143, miR-181 and miR-103/107. Here we report that expression of miR-802 is increased in liver of two obese mouse models and of obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, while reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b as a target of miR-802-dependent silencing and shRNA-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signaling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in db/db mice. Thus, the present study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism via targeting Hnf1b and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.
Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b.
Sex, Specimen part
View SamplesResistance of Saccharomyces cerevisiae to high furfural concentration is based on NADPH-dependent reduction by at least two oxireductases.
Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
No sample metadata fields
View Samples