In this study, time dependent genome wide lung mRNA profiling changes were assessed using C57BL/6J and A/J mice. Through comprehensive bioinformatics and functional genomics analyses, we identified both temporal and strain dependent gene expression patterns, systemically mapped key regulators, bioprocesses, and transcriptional networks controlling lung maturation, providing the basis for new therapeutic strategies to enhance lung function in preterm infants.
Transcriptional programs controlling perinatal lung maturation.
Specimen part, Time
View SamplesThe MMSET (Multiple Myeloma SET domain) protein is overexpressed in multiple myeloma patients with the translocation t(4;14). Although studies have shown the involvement of MMSET/WHSC1 in development, its mode of action in the pathogenesis of multiple myeloma (MM) is largely unknown. We found that MMSET is a major regulator of chromatin structure and transcription in t(4;14) MM cells. High levels of MMSET correlate with an increase in lysine 36 methylation of histone H3 and a decrease in lysine 27 methylation across the genome, leading to a more open structural state of the chromatin. Loss of MMSET expression alters adhesion properties, suppresses growth and induces apoptosis in MM cells. Consequently, genes affected by high levels of MMSET are implicated in the p53 pathway, cell cycle regulation and integrin signaling. Regulation of many of these genes required functional histone methyl-transferase (HMT) activity of MMSET. These results implicate MMSET as a major epigenetic regulator in t(4;14)+ MM.
The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells.
Disease, Cell line
View SamplesAnalysis of CD41 single positive, VE-cadherin single positive, double positive, and double negatvie populations among 7AAD-CD45- cells from day 6 EBs
Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition.
Specimen part
View SamplesHaematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions including leukemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here, we developed a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We used this system to conduct a chemical screen and identified epoxyeicosatrienoic acids (EET) as a family of lipids that enhance HSPC engraftment. EETs’ pro-haematopoietic effects are conserved in the developing zebrafish, where this molecule promotes HSPC specification through activating a unique AP-1/runx1 transcription program autonomous to the haemogenic endothelium. This effect requires the activation of PI3K pathway, specifically PI3Kg. In adult HSPCs, EETs induce transcriptional programs including AP-1 activation, modulating multiple cellular processes, such as migration, to promote engraftment. Finally, we demonstrated that the EET effects on enhancing HSPC homing and engraftment are conserved in mammals. Our study established a novel method to explore the molecular mechanisms of HSPC engraftment, and discovered a previously unrecognized, evolutionarily conserved pathway regulating multiple haematopoietic generation and regeneration processes. EETs may have clinical application in marrow or cord blood transplantation. Overall design: To analyze the effect of 11,12-EET on gene expression of human blood cells, we treated human CD34+ cells (positively selected from cord blood) and the human leukemic cell line U937 with 5uM 11,12-EET for 2 hrs. Control treatment was done with DMSO.
Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment.
No sample metadata fields
View SamplesHuman induced pluripotent stem (iPS) cells derived from somatic cells of patients hold great promise for modelling human diseases. Dermal fibroblasts are frequently used for reprogramming, but require an invasive skin biopsy and a prolonged period of expansion in cell culture prior to use. Here, we report the derivation of iPS cells from multiple human blood sources including peripheral blood mononuclear cells (PBMCs) harvested by routine venipuncture. Peripheral blood-derived human iPS lines are comparable to human embryonic stem (ES) cells with respect to morphology, expression of surface antigens, activation of endogenous pluripotency genes, DNA methylation and differentiation potential. Analysis of Immunoglobulin and T-cell receptor gene rearrangement revealed that some of the PBMC iPS cells were derived from T-cells, documenting derivation of iPS cells from terminally differentiated cell types. Importantly, peripheral blood cells can be isolated with minimal risk to the donor and can be obtained in sufficient numbers to enable reprogramming without the need for prolonged expansion in culture. Reprogramming from blood cells thus represents a fast, safe and efficient way of generating patient-specific iPS cells.
Reprogramming of T cells from human peripheral blood.
Specimen part, Cell line
View SamplesAnalysis of mobilized peripheral blood CD34+ cells from a healthy volunteer under erythroid differentiation conditions with and without stimulation to the BMP or Wnt signaling pathways. For erythroid differentiation, expanded CD34+ cells were placed in Stemspan SFEM medium supplemented with 2% pen/strep, 20ng/ml SCF, 1U/ml Epo, 5ng/ml IL3, 2uM dexamethasone, and 1uM beta-estradiol. Arrays were performed 2 hours after addition of cytokines. For signaling pathway stimulation, cells were exposed to 0.5uM BIO (a GSK3 inhibitor) for Wnt pathway activation, 25ng/ml rhBMP4 for BMP pathway activation, or vehicle control for 2 hours. Three biological replicates were performed per treatment group.
Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration.
Specimen part, Disease
View SamplesThe effect of anti-IL-17 treatment on systemic inflammation is not fully understand. Using cDNA microarray, genomic analysis methods such as GSEA and ingenuity, we characterized the transcriptional changes in the blood of psoriasis patients afer systemic neutralization of IL-17 compared to baseline (before treatment). We also compared the whole blood-derived transcriptome between psoraisis patients at baseline and healthy volunteers to examine systemic inflammation in psoriasis patients.
IL-17 induces inflammation-associated gene products in blood monocytes, and treatment with ixekizumab reduces their expression in psoriasis patient blood.
Specimen part, Subject, Time
View SamplesWe recently reported an oncogenomics-guided screening approach designed to identify genetic drivers of early stage melanoma metastasis, and in this study we functionally validate the top-scoring candidate, homeobox transcription factor A1 (HOXA1), by demonstrating HOXA1s robust effects on melanoma cell invasion, metastasis and tumorigenicity. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveal up-regulation of factors involved in diverse cytokine pathways that include the TGF signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion. Transcriptome profiling also informed HOXA1s ability to potently down-regulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive precursor cell state concomitant with TGF activation. Our analysis of publicly available datasets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors.
HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome.
Cell line
View SamplesWe recently reported an oncogenomics-guided screening approach designed to identify genetic drivers of early stage melanoma metastasis, and in this study we functionally validate the top-scoring candidate, homeobox transcription factor A1 (HOXA1), by demonstrating HOXA1s robust effects on melanoma cell invasion, metastasis and tumorigenicity. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveal up-regulation of factors involved in diverse cytokine pathways that include the TGF signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion. Transcriptome profiling also informed HOXA1s ability to potently down-regulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive precursor cell state concomitant with TGF activation. Our analysis of publicly available datasets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors.
HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome.
Cell line
View SamplesBackground: The transcription factor EVI1 regulates cellular proliferation, differentiation, and apoptosis, and contributes to an aggressive course of disease in myeloid leukemias and other malignancies. Notwithstanding, knowledge about the target genes mediating its biological and pathological functions remains limited. We therefore aimed to identify and characterize novel EVI1 target genes in human myeloid cells. Methods: U937T_EVI1, a previously established human myeloid cell line expressing EVI1 in a tetracycline regulable manner, was subjected to genome wide gene expression microarray analysis. qRT-PCR was used to confirm the regulation of MS4A3 by EVI1. Reporter constructs containing various parts of the MS4A3 upstream region were employed in luciferase assays, and direct binding of EVI1 to the MS4A3 promoter was investigated by chromatin immunoprecipitation. U937 derivative cell lines experimentally expressing EVI1 and/or MS4A3 were generated by retroviral transduction, and tested for their tumorigenicity by subcutaneous injection into severe combined immunodeficient mice. Experimental results were tested for statistical significance using ANOVA and Student's t-test (two-tailed). Results: Gene expression microarray analysis identified 27 unique genes that were up-regulated and 29 that were down-regulated in response to EVI1 induction in the human myeloid cell line, U937. The most strongly repressed gene was membrane-spanning-4-domains subfamily-A member-3 (MS4A3), and its down-regulation by EVI1 was confirmed by qRT-PCR in additional, independent experimental model systems. Reporter gene assays and chromatin immunoprecipitation showed that EVI1 regulated MS4A3 via direct binding to a promoter proximal region. Experimental re-expression of MS4A3 in an EVI1 overexpressing cell line counteracted the tumor promoting effect of EVI1 in a murine xenograft model. Conclusions: Our data reveal MS4A3 as a novel direct target of EVI1 in human myeloid cells, and show that its repression plays a role in EVI1 mediated tumor aggressiveness.
EVI1 promotes tumor growth via transcriptional repression of MS4A3.
Cell line, Time
View Samples