Spermatogonia expressing the highest levels of ID4 (ID4-GFP Bright) represent a population highly enriched for spermatogonial stem cells (SSC) while those expressing lower levels (ID4-GFP Dim) are the putative immediate progenitors. Comparing the transcriptome of these populations can provide insight into the SSC to progenitor transition. Overall design: Comparison of transcriptomes of ID4-GFP Bright and ID4-GFP Dim spermatogonia from postnatal day 8 mouse pups
ID4 levels dictate the stem cell state in mouse spermatogonia.
Specimen part, Subject
View SamplesFanconi anemia (FA) is a genetic disorder characterized by congenital abnormalities, bone marrow failure and increased susceptibility to cancer. Of the fifteen FA proteins, Fanconi anemia group C (FANCC) is one of eight FA core complex components of the FA pathway. Unlike other FA core complex proteins, FANCC is mainly localized in the cytoplasm, where it is thought to function in apoptosis, redox regulation, cytokine signaling and other processes. Previously, we showed that regulation of FANCC involved proteolytic processing during apoptosis. To elucidate the biological significance of this proteolytic modification, we searched for molecular interacting partners of proteolytic FANCC fragments. Among the candidates obtained, the transcriptional corepressor protein C-terminal binding protein-1 (CtBP1) interacted directly with FANCC and other FA core complex proteins. Although not required for stability of the FA core complex or ubiquitin ligase activity, CtBP1 is essential for proliferation, cell survival and maintenance of chromosomal integrity. Expression profiling of CtBP1-depleted and FA-depleted cells revealed that several genes were commonly up- and down-regulated, including the Wnt antagonist Dickkopf-1 (DKK1). These findings suggest that FA and Wnt signaling via CtBP1 could share common effectors.
Fanconi anemia proteins interact with CtBP1 and modulate the expression of the Wnt antagonist Dickkopf-1.
Cell line
View SamplesCalcific aortic valve disease is the most common form of valvular heart disease in the Western World. Milder degrees of aortic valve calcification is called aortic sclerosis and severe calcification with impaired leaflet motion is called aortic stenosis.
MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease.
Specimen part, Disease, Disease stage
View SamplesThe proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of ?H2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways. Overall design: fetal liver cells from either hnRNPL wild-type or hnRNPL KO embryos were analysed for differential expression and alternative splicing by RNA-Seq. RNA-Seq was carried out in biological triplicate for each sample type. Each sample is a single embryo.
Heterogeneous Nuclear Ribonucleoprotein L is required for the survival and functional integrity of murine hematopoietic stem cells.
No sample metadata fields
View SamplesMegakaryocytes isolated from Gfi1b flox/flox mice carrying PF4-Cre or not, and from Gfi1b flox/flox mice carrying ROSA-Cre-ERT with or without tamoxifen injection were analyzed for differential expression by RNA-Seq Overall design: A sample of each Gfi1b wild-type and Knock-Out from each model was analyzed
Gfi1b regulates the level of Wnt/β-catenin signaling in hematopoietic stem cells and megakaryocytes.
No sample metadata fields
View SamplesAims: establishment of reference samples to investigate gene expression selective for endocrine or ductal-exocrine cells within the adult human pancreas. To this end, human islet endocrine cells, FACS-enriched in insulin+ cells, (n=3) and human exocrine ductal cells (n=2) are compared on Affymetrix HG133A platform with duplicate hybridizations of a panel of other primary human tissues.
Clusters of conserved beta cell marker genes for assessment of beta cell phenotype.
Specimen part
View SamplesThe study was designed to capture the in vivo adaptations of nutrient-sensing pancreatic beta cells to fed or fasted (24h) state.
Clusters of conserved beta cell marker genes for assessment of beta cell phenotype.
Sex, Age, Specimen part
View SamplesEpithelial ovarian cancer is a very heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Rational therapeutic approaches need to account for interpatient and intratumoral heterogeneity in treatment design. Detailed characterization of in vitro models representing the different histological and molecular subtypes is therefore imperative. Strikingly, from ~100 available ovarian cancer cell lines the origin and which subtype they represent is largely unknown. We have extensively and uniformly characterized 39 ovarian cancer cell lines (with mRNA/microRNA expression, exon sequencing, dose response curves for clinically relevant therapeutics) and obtained all available information on the clinical features and tissue of origin of the original ovarian cancer to refine the putative histological subtypes. From 39 ovarian cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes (21 Epithelial, 7 Round, 12 Spindle) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes for the Spindle subtype. Clinical validation showed a clear association of the spindle-like tumors with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the morphological subtypes associated with the molecular C1-6 subtypes identified by Tothill et al. [1], Spindle clustered with C1-stromal subtype, Round with C5-mesenchymal and Epithelial with C4 subtype. We provide a uniformly generated data resource for 39 ovarian cancer cell lines, the ovarian cancer cell line panel (OCCP). This should be the basis for selecting models to develop subtype specific treatment approaches, which is very much needed to prolong the survival of ovarian cancer patients.
Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.
Cell line
View SamplesBackground: Global gene expression profiling has been widely used in lung cancer research to identify clinically relevant molecular subtypes as well as to predict prognosis and therapy response. So far, the value of these multi-gene signatures in clinical practice is unclear and the biological importance of individual genes is difficult to assess as the published signatures virtually do not overlap.
Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation.
Sex, Age
View SamplesPurpose:To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. Methods: We employed piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. Results: RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. Overall design: To address if the fludarabine-resistant HG3 cells were transcriptionally different at a global level compared to their parental cells, we performed RNA-sequencing of three pairs of HG3 pools
Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia.
No sample metadata fields
View Samples