The hepatitis E virus (HEV), a non enveloped RNA virus, causes viral hepatitis. The viral open reading frame 2 (ORF2) protein represents the capsid protein of HEV which is known to cause endoplasmic reticulum stress in ORF2 expressing cells. The initiation of endoplasmic reticulum stress induced apoptosis mainly involves the transcriptional activation of pro-apoptotic gene CHOP which will further trigger the major apoptotic pathways. However, the activation of CHOP by ORF2 protein in this study does not induce apoptotic markers such as Bax translocation to mitochondria. We have used the Affymetrix microarray platform to screen the pro-apoptotic effects induced by the expression of ORF2 protein in human hepatic cell lines (Huh7). The Huh7 cells were transduced either with recombinant adenovirus encoding the HEV ORF2 (Ad-ORF2) or an adenovirus encoding the green fluorescent protein (Ad-GFP). The array results consistently showed an ORF2 specific induction of mRNA corresponding to the chaperones Hsp72, Hsp70B and co-chaperone Hsp40. These studies provide further mechanisms of the ER stress mediated pro apoptotic effects caused by the ORF2 protein and its potential role for the activation of anti-apoptotic activity of the host cell.
Hepatitis E virus ORF2 protein activates the pro-apoptotic gene CHOP and anti-apoptotic heat shock proteins.
Cell line
View SamplesThis study investigated possible molecular changes in the oral mucosa of head and neck squamous cell carcinoma patients submitted to chemoradiotherapy with and without low-level laser therapy by cDNA microarray analysis.
cDNA microarray analysis of human keratinocytes cells of patients submitted to chemoradiotherapy and oral photobiomodulation therapy: pilot study.
Specimen part, Disease, Disease stage
View SamplesHsa-miR-500a-5p (miR500a) activity has been associated with breast cancer survival.
miR-500a-5p regulates oxidative stress response genes in breast cancer and predicts cancer survival.
Specimen part, Cell line
View SamplesThe aim of this study is to analyze the transcriptome of epithelial (CD326+ enriched) and immune (CD45+ enriched) fraction in Celiac Disease and controls to find differentially expressed genes.
The methylome of the celiac intestinal epithelium harbours genotype-independent alterations in the HLA region.
Sex, Age, Specimen part, Disease
View SamplesPreeclampsia complicates more than 3% of all pregnancies in the United States and Europe. High-risk populations include women with diabetes, dyslipidemia, thrombotic disorders, hyperhomocysteinemia, hypertension, renal diseases, previous preeclampsia, twin pregnancies, and low socioeconomic status. In the latter case, the incidence may increase to 20% to 25%. Preeclampsia is a major cause of maternal and fetal morbidity and mortality. Preeclampsia is defined by systolic blood pressure of more than 140 mm Hg and diastolic blood pressure of more than 90 mm Hg after 20 weeks gestation in a previously normotensive patient, and new-onset proteinuria. Abnormal placentation associated with shallow trophoblast invasion (fetal cells from outer cell layer of the blastocyst) into endometrium (decidua) and improper spiral artery remodeling in the decidua are initial pathological steps.
Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia.
No sample metadata fields
View SamplesEpigenetic control of neural stem/progenitor cell fate is fundamental to achieve a fully brain architecture. Two intrinsic programs regulate neurogenesis, one by epigenetic-mediated gene transcription and another by cell cycle control. Whether and how these two are coordinated to determine temporally and spatially neural development remains unknown. Here we show that deletion of Trrap (Transcription translation associated protein), an essential cofactor for HAT (histone acetyltransferase), leads to severe brain atrophy due to a combination of cell death and a blockade of neuron production. Specifically, Trrap deletion forces differentiation of apical progenitor (AP) fate into basal progenitors (BP) and neurons thereby limiting the total neurogenic production. Despite Trrap’s general role in transcriptional regulation, a genome-wide transcriptome analysis of neuroprogenitors identified the cell cycle regulators that are specifically affected by Trrap deletion. Furthermore, E2F-dependent recruitment of HAT and transcription factors to the promoter of cell cycle regulators is impaired in Trrap-deleted neuroprogenitors. Consistent with these molecular changes, Trrap deletion lengthens particularly G1 and S phases in APs in vivo. Therefore, our study reveals an essential and a distinct function of Trrap-HAT in regulation of cell cycle progression that is required for proper determination of neuroprogenitor fate. Overall design: Determine gene transcriptions by comparing Trrap-deleted and wild type samples
Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions.
Specimen part, Subject
View SamplesTumor growth and metastasis is controlled by paracrine signaling between cells of the tumor microenvironment and malignant cells. Cancer-associated fibroblasts (CAFs), are functionally important components of the tumor microenvironment. Although some steps involved in the cross-talk between these cells are known, there is still a lot that is not clear. Thus, the addition of, the consideration of microenvironment in the development of the disease, to the clinical and pathological procedures (currently admitted as the consistent value cancer treatments) could lay the foundations for the development of new treatment strategies to control the disease.
Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.
Specimen part
View SamplesPurpose: Evaluate gene expression profiles after inducing differentiation in cultured interstitial cystitis (IC) and control urothelial cells. Materials and Methods: Bladder biopsies were taken from IC patients and controls (women having surgery for stress incontinence). Primary cultures were grown in Keratinocyte Growth Medium with supplements. To induce differentiation, in some plates the medium was changed to DMEM-F12 with supplements. RNA was analyzed with Affymetrix chips. Three nonulcer IC patients were compared with three controls. Results: After inducing differentiation, 302 genes with a described function were altered at least 3-fold with p <0.01 in both IC and control cells. Functions of the162 upregulated genes included cell adhesion (e.g. claudins, occludin, cingulin); urothelial differentiation, retinoic acid pathway and keratinocyte differentiation (e.g. skin cornified envelope components). The 140 downregulated genes included genes associated with basal urothelium (e.g. p63, integrins ?4, ?5 and ?6, basonuclin 1 and extracellular matrix components), vimentin, metallothioneins and members of the Wnt and Notch pathways. Comparing IC vs. control cells after differentiation, only seven genes with a described function were altered at least 3-fold with p <0.01. PI3, SERPINB4, CYP2C8, EFEMP2 and SEPP1 were decreased in IC; AKR1C2 and MKNK1 were increased in IC. Conclusions: Differentiation-associated changes occurred in both IC and control cells. Comparing IC vs. control revealed very few differences. This study may have included IC patients with minimal urothelial deficiency and/or selected the cells that were most robust in culture. Also, the abnormal urothelium in IC may be due to post-translational changes and/or the bladder environment.
Differentiation associated changes in gene expression profiles of interstitial cystitis and control urothelial cells.
Disease
View SamplesTo analyze expression differences between Trp53 pro-and deficient as well as Atm pro- and deficient murine CLL tumors developing in the E-TCL1 mouse model, we analyzed splenocytes isolated from heavily infiltrated spleens of sick mice.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.
Specimen part
View SamplesThe cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of disistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. Combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.
Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo.
Cell line, Treatment
View Samples