To analyze expression differences between Trp53 pro-and deficient as well as Atm pro- and deficient murine CLL tumors developing in the E-TCL1 mouse model, we analyzed splenocytes isolated from heavily infiltrated spleens of sick mice.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.
Specimen part
View SamplesBreast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2-neu) of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs) within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC) and six Her2+. We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER+ cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs may contribute to the more invasive properties and unfavorable prognosis of Her2+ breast cancer. These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.
Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles.
Specimen part, Subject
View SamplesPreeclampsia complicates more than 3% of all pregnancies in the United States and Europe. High-risk populations include women with diabetes, dyslipidemia, thrombotic disorders, hyperhomocysteinemia, hypertension, renal diseases, previous preeclampsia, twin pregnancies, and low socioeconomic status. In the latter case, the incidence may increase to 20% to 25%. Preeclampsia is a major cause of maternal and fetal morbidity and mortality. Preeclampsia is defined by systolic blood pressure of more than 140 mm Hg and diastolic blood pressure of more than 90 mm Hg after 20 weeks gestation in a previously normotensive patient, and new-onset proteinuria. Abnormal placentation associated with shallow trophoblast invasion (fetal cells from outer cell layer of the blastocyst) into endometrium (decidua) and improper spiral artery remodeling in the decidua are initial pathological steps.
Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia.
No sample metadata fields
View SamplesGene expression analysis was performed from microdissected small and big HRS cells, which were taken from smears of the Hodgkin cell lines
Small and big Hodgkin-Reed-Sternberg cells of Hodgkin lymphoma cell lines L-428 and L-1236 lack consistent differences in gene expression profiles and are capable to reconstitute each other.
Specimen part
View SamplesSeveral studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts (CAF). However, to date a deep molecular characterization of these fibroblasts is lacking. Aim of the present study therefore was a comprehensive characterization of these fibroblasts.
Fibroblasts in Nodular Sclerosing Classical Hodgkin Lymphoma Are Defined by a Specific Phenotype and Protect Tumor Cells from Brentuximab-Vedotin Induced Injury.
Disease
View SamplesT-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. To address its incomplete molecular concept, we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identified novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor / cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM towards a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL.
Specimen part
View SamplesThe molecular biology of metastatic potential in melanoma has been studied many times previously and changes in the expression of many genes have been linked to metastatic behaviour. What is lacking is a systematic characterization of the regulatory relationships between genes whose expression is related to metastatic potential. Such a characterization would produce a molecular taxonomy for melanoma which could feasibly be used to identify epigenetic mechanisms behind changes in metastatic behaviour. To achieve this we carried out three separate DNA microarray analyses on a total of 86 cultures of melanoma. Significantly, multiple testing correlation revealed that previous reports describing correlations of gene expression with activating mutations in BRAF or NRAS were incorrect and that no gene expression patterns correlate with the mutation status of these MAPK pathway components. Instead, we identified three different sample cohorts (A, B and C) and found that these cohorts represent melanoma groups of differing metastatic potential. Cohorts A and B were susceptible to TGFbeta-mediated inhibition of proliferation and had low motility. Cohort C was resistant to TGFb and demonstrated high motility. Meta-analysis of the data against previous studies linking gene expression and phenotype confirmed that cohorts A and C represent transcription signatures of weakly and strongly metastatic melanomas, respectively. Gene expression co-regulation suggested that signalling via TGFbeta-type and Wnt pathways underwent considerable change between cohorts. These results suggest a model for the transition from weakly to strongly metastatic melanomas in which TGFbeta-type signalling upregulates genes expressing vasculogenic/extracellular matrix remodeling factors and Wnt signal inhibitors, coinciding with a downregulation of genes downstream of Wnt signalling.
Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature.
Sex, Age, Specimen part
View SamplesThe molecular biology of metastatic potential in melanoma has been studied many times previously and changes in the expression of many genes have been linked to metastatic behaviour. What is lacking is a systematic characterization of the regulatory relationships between genes whose expression is related to metastatic potential. Such a characterization would produce a molecular taxonomy for melanoma which could feasibly be used to identify epigenetic mechanisms behind changes in metastatic behaviour. To achieve this we carried out three separate DNA microarray analyses on a total of 86 cultures of melanoma. Significantly, multiple testing correlation revealed that previous reports describing correlations of gene expression with activating mutations in BRAF or NRAS were incorrect and that no gene expression patterns correlate with the mutation status of these MAPK pathway components. Instead, we identified three different sample cohorts (A, B and C) and found that these cohorts represent melanoma groups of differing metastatic potential. Cohorts A and B were susceptible to TGFbeta-mediated inhibition of proliferation and had low motility. Cohort C was resistant to TGFb and demonstrated high motility. Meta-analysis of the data against previous studies linking gene expression and phenotype confirmed that cohorts A and C represent transcription signatures of weakly and strongly metastatic melanomas, respectively. Gene expression co-regulation suggested that signalling via TGFbeta-type and Wnt pathways underwent considerable change between cohorts. These results suggest a model for the transition from weakly to strongly metastatic melanomas in which TGFbeta-type signalling upregulates genes expressing vasculogenic/extracellular matrix remodeling factors and Wnt signal inhibitors, coinciding with a downregulation of genes downstream of Wnt signalling.
Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature.
No sample metadata fields
View SamplesTumor growth and metastasis is controlled by paracrine signaling between cells of the tumor microenvironment and malignant cells. Cancer-associated fibroblasts (CAFs), are functionally important components of the tumor microenvironment. Although some steps involved in the cross-talk between these cells are known, there is still a lot that is not clear. Thus, the addition of, the consideration of microenvironment in the development of the disease, to the clinical and pathological procedures (currently admitted as the consistent value cancer treatments) could lay the foundations for the development of new treatment strategies to control the disease.
Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.
Specimen part
View SamplesTo determine the role of NOTCH3 in human esophageal epitheila homeostasis/squamous cell differentiation
A NOTCH3-mediated squamous cell differentiation program limits expansion of EMT-competent cells that express the ZEB transcription factors.
Specimen part, Treatment
View Samples