This SuperSeries is composed of the SubSeries listed below.
Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesAlthough most cutaneous squamous cell carcinomas (cSCC) develop from actinic keratoses (AK), the key events for this evolution remain unclear. We have combined the results of different genomic and expression array platforms on matched samples of sun-exposed skin, AK and cSCC from ten immunocompetent patients, with the objective of better understanding the mechanisms involved in this progression. Gene expression analysis and copy number alterations were assessed using GeneChip Human Gene 2.0 ST Array (Affymetrix) and CytoScan HD Cytogenetics Solution (Affymetrix) platforms, respectively. Integration of genome and transcriptome results was evaluated using the DR-Integrator tool. Additional studies (qPCR, immunohistochemistry and Western blot) were performed for selected genes. Twenty-two genes showed a progressive expression spectrum from clinically normal sun-exposed skin samples to cSCC. FOSL1 and BNC1 encode transcription factors whose expression was increased in cSCC in the expression array and the qPCR. By immunohistochemistry, FOSL1 showed an intense staining at the invasive front of cSCC samples and BNC1 expression varied from a nuclear location (sun-exposed skin) to a cytoplasmic location (cSCC). Western blot analyses confirmed the enhancement of FOSL1 and BNC1 expression. Additionally, the smallest overlapping regions of genomic imbalance (SORIs) involving at least 3 of the samples of each group (sun-exposed skin, AK or cSCC) were selected. One of the SORIs was a deletion in the p24.1 band of chromosome 3, shared by 7 of the cSCC. A strong correlation in the integration analysis was found for NEK10, a gene contained in the previously mentioned SORI. Loss of NEK10 expression in cSCC was confirmed by immunohistochemistry and western blot analyses. In conclusion, our findings suggest that FOSL1 may play a role in promoting the cSCC invasion ability. We have also identified two additional genes, NEK10 and BNC1, which could also act as tumor drivers.
Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesIn this data, we examined Transcriptome detection and expression in 8 samples of Retinoblastoma. We found a central core shared by all samples .
Discovery of a transcriptomic core of genes shared in 8 primary retinoblastoma with a novel detection score analysis.
Disease
View SamplesCutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCC) when compared to non metastasizing cSCC (non MSCC). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NFB signaling pathway. Accordingly, non MSCC display higher levels of membranous pS176 IKK and their stroma is enriched in neutrophils and eosinophils when compared to MSCC. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb depleted cSCC cells. Altogether these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high risk cSCC could benefit from clinical therapies addressed to harness the immune response.
The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma.
Specimen part, Cell line
View SamplesTo gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell (NPC) to a clonal PC and from an indolent clonal PC to a malignant PC, we performed gene expression profiling in 20 patients with MGUS, 33 with high-risk SMM and 41 with MM. The analysis showed that 126 genes were differentially expressed in MGUS, SMM and MM as compared to NPC. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules (snoRNA) and zinc finger proteins. GADD45A was the most significant up-regulated gene in clonal PC compared to NPC. Several proapoptotic genes (AKT1 and AKT2) were downregulated and antiapoptotic genes (APAF1 and BCL2L1) were upregulated in MM, both symptomatic and asymptomatic, compared to MGUS. Myc mediated apoptosis signaling is one of the top canonical pathways differentiating the asymptomatic and symptomatic myeloma. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation in the transition from MGUS to SMM and to MM. In conclusion, our data show that although MGUS, SMM and MM are not clearly distinguishable groups according to their GEP, several signaling pathways and genes were significant deregulated in the different steps of transformation process.
Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.
Specimen part
View SamplesActinic keratosis is a common skin disease that may progress to invasive squamous cell carcinoma. Ingenol mebutate has demonstrated efficacy in field treatment of actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not yet fully understood.
Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel.
Specimen part, Disease, Disease stage, Subject
View SamplesTCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery. To investigate TCERG1 function, we survey genome-wide changes in transcript and exon levels upon TCERG1 knockdown in HEK293T cells. Our data revealed that TCERG1 regulates different types of alternative spliced events, indicating a broad role in the regulation of alternative splicing.
Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures.
Cell line
View SamplesWe analyzed the changes in the spinal cord transcriptome after a spinal cord contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting.
Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.
Treatment
View SamplesThe Cytoplasmic Polyadenylation Element Binding (CPEB)-family of RNA-binding proteins regulates pre-mRNA processing and translation of CPE-containing mRNAs in early embryonic development and synaptic activity. However, the specific functions of each CPEB in the adult organism are poorly understood. Here we show that CPEB4 is required to suppress high fat diet- and aging-induced endoplasmic reticulum (ER) stress, and its subsequent hepatic steatosis. Stress-activated expression of CPEB4 in the liver is controlled through a double layer of regulation. First, Cpeb4 is transcriptionally regulated by the circadian clock and then, its mRNA translation is regulated by the Unfolded Protein Response (UPR) through the upstream Open Reading Frames (uORFs) present in its 5’ UTR. Thus, CPEB4 is synthesized only upon ER-stress but the amplitude of the induction is circadian. In turn, CPEB4 activates a second wave of UPR-translation required to maintain ER and mitochondrial homeostasis. Our results suggest that combined transcriptional and translational regulation of CPEB4 generates a “circadian mediator”, which?coordinates the hepatic UPR activity with periods of high ER protein-folding demand preventing non-alcoholic fatty liver disease (NAFLD). Overall design: mRNA profiles of total liver RNA and liver ER-associated RNA from WT and CPEB4-KO mice
Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress.
Subject
View SamplesThe aim of this study was to perform comparative gene expression analysis of AIP mutation-positive, AIP mutation-negative familial and sporadic somatotroph tumours to discover the genes/pathways responsible for the aggressive phenotype.
Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland.
No sample metadata fields
View Samples