The forkhead O transcription factors (FOXO) integrate a range of extracellular signals including growth factor signaling, inflammation, oxidative stress and nutrient availability, to substantially alter the program of gene expression and modulate cell survival, cell cycle progression, and many cell-type specific responses yet to be unraveled. Naive antigen-specific CD8+ T cells undergo a rapid expansion and arming of effector function within days of pathogen exposure, but in addition, by the peak of expansion, they form precursors to memory T cells capable of self-renewal and indefinite survival.
Differentiation of CD8 memory T cells depends on Foxo1.
Specimen part
View SamplesGoal of the analysis was to identify the mechansisms accounting fo the synergy of T cells redirected to the tumor associated large T antigen and T cells redirected to the Uty minor histocompatibility antigen
T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors.
Specimen part, Treatment
View SamplesDiagnostic samples of peripheral blood form acute myeloid leukemia were analysed for gene expression differences
NFATc1 as a therapeutic target in FLT3-ITD-positive AML.
Sex, Specimen part
View SamplesTo study the effects of treatment with an inhaled PI3Kδ inhibitor during recovery from an exacerbation of Chronic Obstructive Pulmonary Disease (COPD) due to corrective effects on neutrophils that display dysregulated migration characteristics. We aimed to develop novel induced sputum endpoints to demonstrate changes in neutrophil phenotype and proof of mechanism of action in the lung.
Exploring PI3Kδ Molecular Pathways in Stable COPD and Following an Acute Exacerbation, Two Randomized Controlled Trials.
Sex, Specimen part, Treatment, Subject
View SamplesIn order to better understand the systemic immunological responses in a clinical cohort of obese and non-obese asthmatics and healthy subjects, we sought to analyze gene expression from whole blood. We collected whole blood samples from 156 donors and performed gene expression analysis of these samples and identified differentially expressed genes (DEGs) in each obese and/or asthma group relative to healthy volunteers.
Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients.
Sex, Age, Specimen part, Subject
View SamplesThe dynamic and reversible acetylation of proteins catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) was discovered more than 2 decades ago and the enzymatic function of these enzymes are established as a major epigenetic regulatory mechanism of gene transcription. Thus, these epigenetic modifiers are involved in multiple diseases and represent attractive targets for therapeutic intervention. While HDAC inhibitors have been developed and approved by the FDA to treat certain cancers, progress on the development of drug-like HAT inhibitors has lagged. The HAT paralogs p300 and CBP (here called p300/CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes and also implicated in human pathological conditions, including cancer. Current p300/CBP HAT domain inhibitors including natural products and bisubstrate analogs such as Lys-CoA either lack potency and selectivity or suffer from poor cellular permeability. C646 is widely utilized as a tool to inhibit p300/CBP HAT activity, but its off-target activity and reactivity may limit its cellular specificity. Here, we describe A-485 as a potent, selective and drug-like p300/CBP catalytic inhibitor. We show the first high resolution (1.95) co-crystal structure of a pharmacologically active small molecule (A-485) bound to the catalytic active site of p300 HAT domain and demonstrate that A-485 is an acetyl-CoA competitive inhibitor of p300/CBP. A-485 selectively inhibited proliferation across lineage-specific tumor types, including several hematological malignancies and androgen receptor-positive prostate cancer. A-485 robustly inhibited the androgen receptor transcriptional program in both androgen sensitive and castrate resistant prostate cancer and inhibited tumor growth in a castration resistant xenograft model. These results demonstrate the feasibility of selectively drugging the catalytic activity of histone acetyltransferases, provide the framework for delineating the enzymatic functions of HATs, and pave the way for the development of novel therapeutics targeting HAT activity.
Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours.
Cell line
View SamplesAims/hypothesis: While lipid deposition in skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid droplet coat protein perilipin 2 augments intramyocellular lipid content while improving insulin sensitivity. Another member of the perilipin family, perilipin 5 (PLIN5), is predominantly expressed in oxidative tissues like skeletal muscle. Here we investigated the effects of PLIN5 overexpression in comparison with effects of PLIN2 on skeletal muscle lipid levels, gene expression profiles and insulin sensitivity. Methods: Gene electroporation was used to overexpress PLIN5 in tibialis anterior muscle of rats fed a high fat diet. Eight days after electroporation, insulin-mediated glucose uptake in skeletal muscle was measured by means of a hyperinsulinemic euglycemic clamp. Electron microscopy, fluorescence microscopy and lipid extractions were performed to investigate IMCL accumulation. Gene expression profiles were obtained using microarrays. Results: TAG storage and lipid droplet size increased upon PLIN5 overexpression. Despite the higher IMCL content, insulin sensitivity was not impaired and DAG and acylcarnitine levels were unaffected. In contrast to the effects of PLIN2 overexpression, microarray data analysis revealed a gene expression profile favoring FA oxidation and improved mitochondrial function. Conclusions/interpretation: Both PLIN2 and PLIN5 increase neutral IMCL content without impeding insulin-mediated glucose uptake. As opposed to the effects of PLIN2 overexpression, overexpression of PLIN5 in skeletal muscle promoted expression of a cluster of genes under control of PPAR and PGC1 involved in FA catabolism and mitochondrial oxidation.
Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity.
Sex, Age, Specimen part, Treatment
View Samples1,2-unsaturated pyrrolizidine alkaloids (PA) are plant metabolites predominantly occurring in the plant families Asteraceae and Boraginaceae. Acute and chronic PA poisoning causes severe hepatotoxicity. So far, the molecular mechanisms of PA toxicity are not well understood. To analyze its mode of action, primary human hepatocytes were exposed to a non-cytotoxic dose of 100 M of four structurally different PA: echimidine, heliotrine, senecionine, senkirkine. Changes in mRNA expression were analyzed by a whole genome microarray. Employing cut-off values with a |fold change| of 2 and a q-value of 0.01, data analysis revealed numerous changes in gene expression. In total, 4556, 1806, 3406 and 8623 genes were regulated by echimidine, heliotrine, senecione and senkirkine, respectively. 1304 genes were identified as commonly regulated. PA affected pathways related to cell cycle regulation, cell death and cancer development. The transcription factors TP53, MYC, NFB and NUPR1 were predicted to be activated upon PA treatment. Furthermore, gene expression data showed a considerable interference with lipid metabolism and bile acid flow. The associated transcription factors FXR, LXR, SREBF1/2, and PPAR// were predicted to be inhibited. In conclusion, though structurally different, all four PA significantly regulated a great number of genes in common. This proposes similar molecular mechanisms, although the extent seems to differ between the analyzed PA as reflected by the potential hepatotoxicity and individual PA structure.
Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis.
No sample metadata fields
View SamplesType 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid storage exceeds intracellular needs and induces lipotoxic events ultimately contributing to the development of insulin resistance. Lipid droplet (LD)-coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/ADRP) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol storage, marginally increased FA oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet-induced increase of OXPHOS protein content. Diacylglycerol levels were unchanged, while ceramide levels were increased. Despite the increased intramyocellular lipid accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs towards triacylglycerol storage in LDs thereby blunting lipotoxicity-associated insulin resistance.
Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels.
Cell line
View SamplesDeficiencies in the ATM gene are the underlying cause for ataxia telangiectasia, a congenital syndrome characterized by neurological, motor and immunological defects, as well as a predisposition to cancer risks. MicroRNAs (miRNAs) are small regulators of post-transcriptional gene expression and a useful tool for cancer diagnosis, staging, and prediction of therapeutic responses to clinical regimens. In particular, miRNAs have been used to develop signatures for breast cancer profiling. We are interested in the consequences of ATM deficiency on miRNA expression in breast epithelial cells and the potential contribution to cancer predisposition. In this study we investigate the effects of ATM loss on the miRNA expression and related gene expression changes in normal human mammary epithelial cells (HME-CC). We have identified 81 significantly differently expressed miRNAs in the ATM-deficient HME-CCs using small RNA sequencing. Many of these differentially expressed miRNAs have been described and implicated in tumorigenesis and proliferation. These changes include down-regulation of tumor suppressor miRNAs, such as hsa-miR-29c and hsa-miR-16, as well as the over-expression of pro-oncogenic miRNAs hsa-miR-93 and hsa-mir-221. All 81 miRNAs were combined with genome wide gene expression profiles to investigate possible targets of miRNA regulation. We identified messenger RNA (mRNA) targets of these miRNAs that were also significantly regulated after the depletion of ATM. Predicted targets included many genes implicated in cancer formation and progression, including SOCS1 and the proto-oncogene MAF. Integrated analysis of miRNA and mRNA expression allows us to build a more complete understanding of the pathways and networks involved in the breast cancer predisposition observed in individuals deficient in ATM. This study highlights miRNA and predicted mRNA target expression changes in ATM-deficient HME-CCs and suggests a mechanism for the breast cancer-prone phenotype seen in ATM deficient cells and patients. Additionally, this study provides preliminary data for defining miRNA profiles that may be used prognostic biomarkers for breast cancer predisposition. Overall design: Examination of small RNA population in human mammary epithelial cell lines. Each condition was preformed in triplicate.
Genome-wide small RNA sequencing and gene expression analysis reveals a microRNA profile of cancer susceptibility in ATM-deficient human mammary epithelial cells.
Specimen part, Cell line, Subject
View Samples