Normal and diseased human tissues were profiled for gene expression using the Affymetrix U133 plus 2.0 array
Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator.
No sample metadata fields
View SamplesCerebral organoids – three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells – have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. Overall design: 734 single-cell transcriptomes from human fetal neocortex or human cerebral organoids from multiple time points were analyzed in this study. All single cell samples were processed on the microfluidic Fluidigm C1 platform and contain 92 external RNA spike-ins. Fetal neocortex data were generated at 12 weeks post conception (chip 1: 81 cells; chip 2: 83 cells) and 13 weeks post conception (62 cells). Cerebral organoid data were generated from dissociated whole organoids derived from induced pluripotent stem cell line 409B2 (iPSC 409B2) at 33 days (40 cells), 35 days (68 cells), 37 days (71 cells), 41 days (74 cells), and 65 days (80 cells) after the start of embryoid body culture. Cerebral organoid data were also generated from microdissected cortical-like regions from H9 embryonic stem cell derived organoids at 53 days (region 1, 48 cells; region 2, 48 cells) or from iPSC 409B2 organoids at 58 days (region 3, 43 cells; region 4, 36 cells).
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation.
Specimen part, Cell line
View SamplesHuman embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low-dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties.
Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation.
Specimen part, Cell line
View SamplesHuman embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low-dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties.
Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation.
Specimen part, Cell line
View SamplesPurpose: Foxp2 is the first and for now the only gene connected to speech and language in humans. Two aminoacid substitutions took place in this protein during recent human evolution, after our split from the last common ancestor with chimpanzees, and are most likely to have undergone positive selection in human lineage (Enard et al., 2002). Methods: Transgenic mice in which the wild-type (murine) version of Foxp2 was replaced with the one bearing two human-specific amino acid substitutions (i.e. "humanized" Foxp2) - Foxp2hum/hum, have been compared to their wild-type (WT) counterparts in terms of behavior, electrophysiology and striatal gene expression. The latter was analyzed through RNA-sequencing performed on pooled indexed libraries on three flow cells on Illumina GAIIx. The reads were mapped to mouse genome (mm9) by TopHat 1.4.1 and were counted using Bedtools. mRNA profiles were obtained with more than 20 million reads for every sample. Differential gene expression was analyzed with DESeq using multifactor model (Anders and Huber, 2010). Results: Wild-type and Foxp2hum/hum mice did not show any significant differences in expression at individual gene level, neither in dorsomedial nor in dorsolateral striatum. However, when genes were grouped into functional categories and analyzed accordingly, this revealed a significant downregulation of functional categories related to synaptic signalling and plasticity in dorsomedial striatum of Foxp2hum/hum mice. Overall design: RNA-sequencing was performed on dorsomedial and dorsolateral striatum of wild-type and Foxp2hum/hum mice, on three flow cells Illumina GAIIx. The libraries from each sample were indexed and pooled together.
Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance.
No sample metadata fields
View SamplesNormal human tissue samples from ten post-mortem donors were processed to generate total RNA, which was subsequently analyzed for gene expression using Affymetrix U133 plus 2.0 arrays. Donor information: Donor 1 - 25 year old male; donor 2 - 38 year old male; donor 3 - 39 year old female; donor 4 - 30 year old male; donor 5 - 35 year old male; donor 6 - 52 year old male; donor 7 - 50 year old female; donor 8 - 48 year old female; donor 9 - 53 year old female; donor 10 - 23 year old female
Gene expression analyses reveal molecular relationships among 20 regions of the human CNS.
No sample metadata fields
View SamplesEfforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. The first comprehensive database of gene expression in primate (Macaca fascicularis) taste buds is presented. This database provides a foundation for further studies in diverse aspects of taste biology. A taste bud gene expression database was generated using laser capture microdissection (LCM) of tissue freeze medium OTC embedded macaque tongue tissue blocks. We collected fungiform (FG) taste buds at the front of the tongue, circumvallate (CV) taste buds at the back of the tongue, as well as non-gustatory lingual epithelium (LE). Gene expression was also analyzed in the top and bottom portions of CV taste buds collected using LCM. Samples were collected from 10 animals - 7 female, 3 male.
Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.
Sex, Age, Specimen part
View SamplesTranscriptional effectors of white adipocyte-selective gene expression have not been described. TLE3 is a white-selective cofactor that acts reciprocally with the brown-selective cofactor Prdm16 to specify lipid storage and thermogenic gene programs.
Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetic architecture of insulin resistance in the mouse.
Sex, Age, Specimen part
View Samples