This study explored the role of the growth hormone (GH) / insulin-like growth factor 1 (IGF-1) axis on the life-long caloric restriction (CR)-associated remodeling of white adipose tissue (WAT). Adipocyte size and gene expression profiles, using high-density oligonucleotide microarrays, were analyzed in WAT of six- to seven-month old wild Wistar rats fed ad libitum (AL) or subjected to a 30% caloric restriction (CR), and heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (Tg). While not significant in Tg rats, adipocyte size was significantly reduced in CR rats compared with AL rats. The microarray data based on the principal component analysis demonstrated that the gene expression profile of CR rats markedly differed from the AL rats, while Tg hardly differed, suggesting that CR-associated WAT remodeling was predominantly regulated in a GH/IGF-1-independent manner. The gene cluster with the largest change induced by CR included several genes involved in lipid biosynthesis and inflammation. Moreover, many of the genes transcriptionally regulated by sterol regulatory element binding proteins (SREBPs) were found in the cluster related to lipid biosynthesis. Real-time reverse transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its down-stream targets was particularly up-regulated in CR rats compared with SREBP-2 and its down-stream targets. Our findings suggest that SREBP-1 is a major transcription factor in CR-associated remodeling of WAT, and might be one of the key regulators of the anti-aging and pro-longevity effects of CR.
Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.
Age, Specimen part
View SamplesTo understand plant adaptation to heat stress, gene expression profiles of Arabidopsis leaves under heat stress, during recovery and control condition were obtained using microarray. Microarray data listed responsible candidate genes for glycerolipid metabolism.
Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana.
Age, Specimen part
View SamplesPRR5 transcription factor acts in the circadian clock system. To elucidate regulated genes by PRR5, Chimeric protein PRR5-VP, which activates direct target genes of PRR5, was over-expressed in Col-0. Microarray analsysis was performed using these plants with Affymetrix ATH1 genechip.
Transcriptional repressor PRR5 directly regulates clock-output pathways.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part, Treatment
View SamplesRecent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part, Treatment
View SamplesRecent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part
View SamplesBy using a genetically accurate mouse model, we demonstrate that endogenous expression of oncogenic N-RasG12D and Tet2 haploinsufficiency collaborate to accelerate CMML development in mice. Gene expression was compared across all genotypes (WT, Tet2+/-, NrasG12D/+ and double mutants) in bone marrow-derived hematopoietic stem cells (CD150+CD48-Lin-Sca1+cKit+) using RNA-seq. N-RasG12D and Tet2 haploinsufficiency cooperate to induce both unique and overlapping effects on HSC gene expression programs. Overall design: Gene expression profiling in FACS-sorted SLAM HSCs from 10-12 week old wild type control (n=3), NrasG12D/+ single mutant (n=3), Tet2+/- single mutant (n=3) and NrasG12D/+;Tet2+/- double mutant (n=3) mice.
Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells.
Specimen part, Cell line, Subject
View SamplesTo identify genes that regulate root development in a hydrogen peroxide devendent manner, we performed a time course microarray analysis of root treated with 1mM H2O2.
MYB30 links ROS signaling, root cell elongation, and plant immune responses.
Age, Specimen part, Time
View SamplesUsing wild type and Ash1l deltaSET mutant embryonic stem cells, here we report differences of gene expression pattern under undifferentiated state and differentiated state. Interestingly, gene expression changes are frequently observed in a subset of gene group that is regulated by Polycomb group proteins. Overall design: Examination of 2 cell types in 2 different conditions.
Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract polycomb silencing.
Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system.
Specimen part
View Samples