Precise localization of the histone H3 variant CENP-A(Cse4) to centromeres is essential for accurate chromosome segregation. In budding yeast, CENP-A(Cse4) is regulated by ubiquitin-mediated proteolysis to ensure its exclusive localization to the centromere. Overexpression of CENP-A(Cse4) is lethal when the CENP-A(Cse4) E3 ubiquitin ligase, Psh1, is deleted. CENP-A(Cse4) mislocalizes to promoters in this condition, so we investigated if there was an effect on gene expression of downstream genes using RNA-seq. Overall design: RNA-seq from two or three biological replicates each, at t0 and t2 hours after adding galactose for each of 6 experimental genotypes.
Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.
Subject, Time
View SamplesNasopharyngeal carcinoma is an Epstein-Barr virus-associated epithelial cancer with high prevalence in Southeast Asia. mRNA expression levels were measured for essentially all human genes and all latent Epstein-Barr virus (EBV) genes in nasopharyngeal carcinoma tissue samples and normal nasopharyngeal tissues. Data were analyzed for differential gene expression between tumor and normal tissue and for correlations with levels of viral gene expression. Primary publications: Sengupta et al, 2006, Cancer Research 66(16): 7999-8006. Dodd et al, 2006, Cancer Epidemiology, Biomarkers & Prevention 15(11): 2216-2225.
Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma.
No sample metadata fields
View SamplesResponsiveness of cells to alpha-toxin (Hla) from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of EGFR and MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.
A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin.
Cell line
View SamplesABSTRACT
Increased expression of bcl11b leads to chemoresistance accompanied by G1 accumulation.
No sample metadata fields
View SamplesRegulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4+ Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-Seq and into transcriptome analysis by mRNA-Seq. We combine FoxP3 ChiP-Seq and mRNA-Seq in order to understand the transcriptional differences between primary human CD4+ T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-Seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies.
Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human.
No sample metadata fields
View SamplesWe used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples when compared to normal B cells.
Identification of highly methylated genes across various types of B-cell non-hodgkin lymphoma.
Specimen part, Disease, Disease stage
View SamplesPoly(A) enriched RNA derived from the L5 DRG 7 days following L5-SNT and from naïve L5-DRG tissue was subjected to RNA-seq analysis at different sequencing depths Overall design: 6 biological replicates (3 case – SNT subjected L5-DRG tissue, 3 control – naïve L5-DRG tissue). Each biological replicate was divided B46into 3 technical replicates; each of the technical replicates for a given sample was sequenced to a depth of 17M, 25M or 50M reads. Reads were single stranded and 34bps in length. Multiplexing was used in order to generate the read depths of different sizes. The gene expression values and fold changes in expression between naive and SNT samples were compared to those generated by a microarray experiment carried out on further technical replicates of the same samples, details in the manuscript (submitted - under revision).
A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.
No sample metadata fields
View SamplesTransformation of follicular lymphoma (FL) to a more aggressive disease is associated with rapid progression and death. Existing molecular markers for transformation are few and their clinical impact is limited. Here, we report on a whole-genome study of DNA copy numbers and gene expression profiles in serial FL biopsies. We identified 698 genes with high correlation between gene expression and copy number and the molecular network most enriched for these cis-associated genes. This network includes 14 cis-associated genes directly related to the NFB pathway. For each of these 14 genes, the correlated NFB target genes were identified and corresponding expression scores defined. The scores for six of the cis-associated NFB pathway genes (BTK, IGBP1, IRAK1, ROCK1, TMED7-TICAM2 and TRIM37) were significantly associated with transformation. The results suggest that genes regulating B-cell survival and activation are involved in transformation of FL
Whole-genome integrative analysis reveals expression signatures predicting transformation in follicular lymphoma.
Specimen part
View SamplesInterleukin-33 (IL-33) is elevated in afflicted tissues of patients with mast cell-dependent chronic allergic diseases. Based on its acute effects on mouse mast cells (MCs), IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of chronic IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. We now find that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to antigen. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hypo-responsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation including antigen-mediated calcium mobilization and cytoskeletal reorganization; potentially as a consequence of down-regulation of the expression of PLCg1 and Hck. These findings suggest that IL-33 may play a protective, rather than a causative role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to down-regulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.
IL-33 induces a hyporesponsive phenotype in human and mouse mast cells.
Specimen part, Treatment
View SamplesT helper cell subsets have unique calcium (Ca2+) signals when activated with identical stimuli. The regulation of these Ca2+ signals and their correlation to the biological function of each T cell subset remains unclear. Trpm4 is a Ca2+-activated cation channel that we found is expressed at higher levels in Th2 cells compared to Th1 cells. Inhibition of Trpm4 expression increased Ca2+ influx and oscillatory levels in Th2 cells and decreased influx and oscillations in Th1 cells. This inhibition of Trpm4 expression also significantly altered T cell cytokine production and motility. Our experiments revealed that decreasing Trpm4 levels divergently regulates nuclear localization of NFAT. Consistent with this, gene profiling did not show Trpm4 dependent transcriptional regulation and T-bet and GATA-3 levels remain identical. Thus, Trpm4 is expressed at different levels on T helper cells and plays a distinctive role in T cell function by differentially regulating Ca2+ signaling and NFAT localization.
Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization.
Specimen part, Treatment, Time
View Samples