This SuperSeries is composed of the SubSeries listed below.
Integrative Epigenetic Analysis Reveals Therapeutic Targets to the DNA Methyltransferase Inhibitor Guadecitabine (SGI-110) in Hepatocellular Carcinoma.
Cell line, Treatment, Time
View SamplesThere is an urgent need for developing more effective therapies for aggressive hepatocellular carcinoma (HCC). Guadecitabine (SGI-110) is a second-generation DNA methyltransferase inhibitor (DNMTi) currently in clinical trials for HCC and shows greater stability and performance over first generation DNMTis. The aim of this study is to identify potential therapeutic targets of SGI-110 for clinical trials.
Integrative Epigenetic Analysis Reveals Therapeutic Targets to the DNA Methyltransferase Inhibitor Guadecitabine (SGI-110) in Hepatocellular Carcinoma.
Cell line, Time
View SamplesWe performed gene expression profiling of 26 colorectal tumors and matched histologically normal adjacent colonic tissue samples using the Illumina Ref-8 whole-genome expression BeadChip. We performed an integrated analysis of promoter DNA methylation and gene expression data to investigate the effects of DNA hypermethylation on gene expression.
Genome-scale analysis of aberrant DNA methylation in colorectal cancer.
Sex, Disease, Disease stage
View SamplesAnalysis of differentiating LSD1-KD C2C12 myoblasts. We found LSD1 is an important regulator of oxidative phenotypes in skeletal muscle cells.
LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation.
Specimen part, Cell line
View SamplesAnalysis of differentiating C2C12 myoblasts treated with two LSD1 specific inhibitors. We found LSD1 is an important regulator of oxidative phenotypes in skeletal muscle cells. Results provide insight into the molecular mechanisms underlying roles of LSD1 in myocytes.
LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation.
Specimen part, Cell line
View SamplesHow neurons are wired to form precise circuits is crucial to understand the development of cortical functions. Glutamatergic pyramidal cell and GABAergic interneuron wire up the cortex through differentiated cellular events. However, little is known about the molecular mechanisms that underlie the unique features of interneuron wiring.
The Microtubule Regulator NEK7 Coordinates the Wiring of Cortical Parvalbumin Interneurons.
Specimen part
View SamplesMetabolism is tightly coupled with the process of aging, and tumorigenesis. However, the mechanisms regulating metabolic properties in different contexts remain unclear. Cellular senescence is widely recognized as an important tumor suppressor function and accompanies metabolic remodeling characterized by increased mitochondrial oxidative phosphorylation (OXPHOS). Here we showed retinoblastoma (RB) is required for the increased OXPHOS in oncogene-induced senescent (OIS) cells. Combined metabolic and gene expression profiling revealed that RB mediated activation of the glycolytic pathway in OIS cells, causing upregulation of several glycolytic genes and concomitant increases in the levels of associated metabolites in the glycolytic pathway. Knockdown of these genes by small interfering RNAs (siRNAs) resulted in decreased mitochondrial respiration, suggesting that RB-mediated glycolytic gene activation promotes metabolic flux into the OXPHOS pathway. These results suggest that coordinate transcriptional activation of metabolic genes by RB enables OIS cells to maintain metabolically bivalent states that both glycolysis and OXPHOS are highly active. Collectively, our findings demonstrated a previously unrecognized function of RB in OIS cells.
Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.
Cell line, Treatment
View SamplesBy transcriptome analysis of IMR-90 human fibroblasts following oncogene-induced senescence (OIS) and replicative senescence (RS), we identified commonly regulated genes in both conditions.
The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling.
Cell line, Treatment
View SamplesCellular senescence is an ireversible growth arrest with alterd metabolic potentials including DNA, RNA and protein dynamics. We found that loss of the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), induces senescence in human fibroblasts. To investigate the role of SETD8 in cellular senescence, we performed a microarray-based transcriptomic analysis in SETD8-knockdown cells. Our results demonstrate that SETD8 links the epigenomic gene regulation to senescence-associated metabolic remodeling.
The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling.
Cell line
View SamplesAlveolar rhabdomyosarcoma (aRMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. The majority of aRMS tumors express the fusion protein PAX3-FOXO1 (PF), which has proven chemically intractable. As such, we identified proteins downstream from or cooperate with PF to support tumorigenesis, including SFRP3 (FRZB). Suppression of SFRP3 using lentivirally transduced shRNAs inhibits cell growth in vitro and tumor growth in vivo. This study aims to identify the genetic changes that underlie the SFRP3 suppression-mediated decreased cell growth. We analyzed changes using Gene Ontology (GO) enrichment and found the induced genes were enriched in striated muscle development/differentiation. In contrast, the repressed genes were enriched in response to stimulus and cell cycle/mitosis genes. We also observed as expected downregulation of SFRP3 (FRZB) but also downregulation of Wnt pathway-repressing genes such as CTBP2 (a transcriptional repressor of TCF, similar to CTBP1 ) and NAV2 (which is downstream from APC). Conversely, we noted upregulation of genes including CCND1 (cyclin D1) and SNAI2 (SLUG), both Wnt signaling target genes and WNT6, which is known to inhibit myoblast proliferation but induce myoblast elongation.
Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma.
Disease, Cell line, Treatment
View Samples