refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 271 results
Sort by

Filters

Technology

Platform

accession-icon GSE13285
Human Fetal Hemoglobin Expression is Regulated by the Developmental Stage-Specific Repressor BCL11A
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13284
Human CD34-derived erythroid progenitors treated with BCL11A siRNAs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the beta-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here we examine BCL11A as a potential regulator of HbF expression. The high HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the beta-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in beta-hemoglobin disorders.

Publication Title

Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13283
Mouse Erythroleukemia (MEL) Cells Expressing Tagged Versions of BCL11A
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the beta-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here we examine BCL11A as a potential regulator of HbF expression. The high HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the beta-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in beta-hemoglobin disorders.

Publication Title

Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP136698
A CLK3-HMGA2 alternative splicing axis impacts human hematopoietic stem cell molecular identity throughout development (HPC-5F RNAseq)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

While gene expression dynamics have been extensively catalogued during hematopoietic differentiation in the adult, less is known about transcriptome diversity of human hematopoietic stem cells (HSCs) during development. To characterize transcriptional and post-transcriptional changes in HSCs during development, we leveraged high-throughput genomic approaches to profile miRNAs, lincRNAs, and mRNAs. Our findings indicate that HSCs manifest distinct alternative splicing patterns in key hematopoietic regulators. Detailed analysis of the splicing dynamics and function of one such regulator, HMGA2, identified an alternative isoform that escapes miRNA-mediated targeting. We further identified the splicing kinase CLK3 that, by regulating HMGA2 splicing, preserves HMGA2 function in the setting of an increase in let-7 miRNA levels, delineating how CLK3 and HMGA2 form a functional axis that influences HSC properties during development. Collectively, our study highlights molecular mechanisms by which alternative splicing and miRNA-mediated post-transcriptional regulation impact the molecular identity and stage-specific developmental features of human HSCs. Overall design: RNA-seq of HPC-5F cells transduced with a control (CTRL), HMGA2-L (LONG), HMGA2-S (SHORT) or CLK3 ORF lentiviral over-expression vectors.

Publication Title

A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE37467
Global Regulation of Nucleosome Organization And Transcription By The Yeast Ssn6-Tup1 Corepressor
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9517
Cysteine deprivation in liver cell line
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

First experiment: Cells were cultured in sulfur amino acid-free DMEM supplemented with 0.1 mM methionine + 0.1 mM cysteine (complete) or supplemented only with 0.1 mM methionine (cysteine-free). Cells were cultured in either medium for 42 h (Long + Cys; Long -Cys) or in cysteine-free medium for 36 h followed by 6 h in complete medium (Short +Cys)

Publication Title

HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37466
Global Regulation of Nucleosome Organization And Transcription By The Yeast Ssn6-Tup1 Corepressor (expression)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The yeast Ssn6-Tup1 complex regulates gene expression through a variety of mechanisms, including positioning of nucleosomes over promoters of some target genes to limit accessibility to the transcription machinery. To further define the functions of Ssn6-Tup1 in gene regulation and chromatin remodeling, we performed genome-wide profiling of changes in nucleosome organization and gene expression that occur upon loss of SSN6 or TUP1, and observed extensive nucleosome alterations in both promoters and gene bodies of derepressed genes. Our improved nucleosome profiling and analysis approaches revealed low-occupancy promoter nucleosomes (P nucleosomes) at locations previously defined as nucleosome-free regions. In the absence of SSN6 or TUP1, this P nucleosome is frequently lost, whereas nucleosomes are gained at -1 and +1 positions, accompanying up-regulation of downstream genes. Our analysis of public ChIP-seq data revealed that Ssn6 and Tup1 preferentially bind TATA-containing promoters, which are also enriched in genes derepressed upon loss of SSN6 or TUP1. These results suggest that stabilization of the P nucleosome on TATA-containing promoters may be a central feature of the repressive chromatin architecture created by the Ssn6-Tup1 corepressor, and that releasing the P nucleosome contributes to gene activation.

Publication Title

Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13142
HepG2/C3A cells cultured for 42 h in complete or leucine-devoid medium
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

HepG2/C3A cells cultured for 42 h in complete or leucine-devoid medium

Publication Title

HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26267
Comparison of hepatic gene expression between short-term calorie restricted wild-type and Dgat1 deficient middle-aged female mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Leanness is associated with increased lifespan and is linked to favorable metabolic conditions promoting life extension.

Publication Title

Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE67219
Using human genetic variation to improve red blood cell production from stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Multipotent and pluripotent stem cells have significant potential as sources for cell replacement therapies. However, the low yield and quality of in vitro differentiated cells produced from various stem cell sources presents a significant limitation for therapeutic applications. The most mature use of these stem cell products is in the field of transfusion medicine, where stem cell-derived red blood cells (RBCs) have clinically-proven potential as alternative transfusion products. To improve upon current approaches for RBC production, we used insight from both common and rare human genetic variation of blood counts to focus on the SH2B3 gene. By producing loss of function of SH2B3 using targeted knockdown and genome editing approaches in human hematopoietic stem and progenitor cells, as well as human pluripotent stem cells, we are able to significantly improve both the quality and yield of in vitro derived RBCs. We illustrate how insight from human genetic variation can assist in the development of broadly applicable approaches that have tremendous value for regenerative medicine.

Publication Title

Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact