This SuperSeries is composed of the SubSeries listed below.
Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.
Cell line
View SamplesKnowledge of both the global chromatin structure and the gene expression programs of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells should provide a robust means to assess whether the genomes of these cells have similar pluripotent states. Recent studies have suggested that ES and iPS cells represent different pluripotent states with substantially different gene expression profiles. We describe here a comparison of global chromatin structure and gene expression data for a panel of human ES and iPS cells. Genome-wide maps of nucleosomes with histone H3K4me3 and H3K27me3 modifications indicate that there is little difference between ES and iPS cells with respect to these marks. Gene expression profiles confirm that the transcriptional programs of ES and iPS cells show very few consistent differences. Although some variation in chromatin structure and gene expression was observed in these cell lines, these variations did not serve to distinguish ES from iPS cells.
Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.
Cell line
View SamplesInduced pluripotent stem cells (iPSCs) derived from somatic cells of patients by viral vector-mediated factor transduction represent a powerful tool for biomedical research and may provide a source for cell replacement therapies. However, the proviruses encoding the reprogramming factors represent a major limitation of the current technology because even low vector expression may alter the differentiation potential of the iPSCs and induce malignant transformation. Here we show that fibroblasts from five patients with idiopathic Parkinsons disease (PD) can be efficiently reprogrammed into hiPSCs and subsequently differentiated into dopaminergic neurons. Moreover, we derived PD specific hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Upon factor deletion these cells maintain a pluripotent state and intact karyotype. Importantly, these factor-free hiPSCs show a global gene expression profile, which is more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in conventional virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.
Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors.
No sample metadata fields
View SamplesGenetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many of the potential applications are still limited by the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. These challenges could be overcome by the use of adult tissue stem cells derived from hPSCs, as their restricted potential could limit the differentiation towards other undesired linages, and allow in vitro expansion and long- term propagation of fully differentiated tissue. To isolate adult stem cells from hPSCs, we applied genome-editing to generate an LGR5-GFP reporter system and subsequently developed a differentiation protocol for human intestinal tissue comprising an adult stem cell niche and all major cell types of the adult intestine. This novel derivation protocol is highly robust and even permits the isolation of intestinal organoids without the LGR5 reporter. Transcriptional profiling, electron microscopy and functional analysis revealed that such human organoid cultures could be derived with high purity, and a composition and morphology similar to that of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. With our ability to genetically engineer hPSCs using site-specific nucleases, this adult stem cell system provides a novel platform by which to study human intestinal disease in vitro. Overall design: RNA from primary organoid samples was isolated from organoid lines that were both cultured for 1-6 months and derived from duodenum, ileum, or rectum biopsies of human subjects as described previously (Sato et al., Gastroenterology 2011) grown in media called WENR+inhibitors. RNA was also isolated from various steps in the culturing and differentiation protocol.
Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.
Specimen part
View SamplesPatient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease in disease relevant cells, as well as a promising source for cell replacement therapies for degenerative diseases. However one of the crucial limitations before realizing the full promise of this disease in a dish approach has been the inability to do controlled experiments under genetically defined conditions. This is particularly relevant for disorders with long latency periods, such as Parkinsons disease (PD), where in vitro phenotypes of patient-derived iPSCs are predicted to be subtle and susceptible to significant epistatic effects of genetic background variations. By combining zinc-finger nuclease (ZFN)-mediated genome editing and iPSC technology we provide a generally applicable solution to this key problem by generating isogenic pairs of disease and control human embryonic stem cells (hESCs) and hiPSCs lines that differ exclusively at a susceptibility variant for PD by modifying a single point mutation (A53T) in the -synuclein gene. The robust capability to genetically correct disease causing point mutations in patient-derived hiPSCs represents not only a significant progress for basic biomedical research but also a major advancement towards hiPSC-based cell replacement therapies using autologous cells.
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.
Specimen part
View SamplesTranscriptome profiling was performed on muscle biopsies from patients immediately before Total Knee Arthroplasty and two hours after TKA and tourniquet application. Overall design: RNA was isolated from 10 patients who were give vastus lateralis muscle biopsies immediately before surgery and 2 hours post surgery with tourniquet
Transcriptional profiling and muscle cross-section analysis reveal signs of ischemia reperfusion injury following total knee arthroplasty with tourniquet.
No sample metadata fields
View SamplesTo dissect the impact of nuclear and extranuclear mutant htt on the initiation and progression of disease, we generated a series of transgenic mouse lines in which nuclear localization (NLS) or nuclear export sequences (NES) have been placed N-terminal to the htt exon 1 protein carrying 144 glutamines. Our data indicate that the exon 1 mutant protein is present in the nucleus as part of an oligomeric or aggregation complex. Increasing the concentration of the mutant transprotein in the nucleus is sufficient for, and dramatically accelerates the onset and progression of behavioral phenotypes. Furthermore, nuclear exon 1 mutant protein is sufficient to induce cytoplasmic neurodegeneration and transcriptional dysregulation. However, our data suggests that cytoplasmic mutant exon 1 htt, if present, contributes to disease progression.
Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington's disease.
No sample metadata fields
View SamplesExpression profiles of acute myeloid leukemia patient samples.
Identification of genes with abnormal expression changes in acute myeloid leukemia.
No sample metadata fields
View SamplesAcute myeloid leukemia (AML) is one of the most common and deadly forms of hematopoietic malignancies. We hypothesized that microarray studies could identify previously unrecognized expression changes that only occur only in AML blasts. We were particularly interested in those genes with increased expression in AML, believing that these genes may be potential therapeutic targets.
Identification of genes with abnormal expression changes in acute myeloid leukemia.
Sex, Disease
View Samples