refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 155 results
Sort by

Filters

Technology

Platform

accession-icon SRP091686
Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role During Repair Kinetics after Selective Club Cell Ablation
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors) signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor) in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury. Overall design: Lung mRNA profiles of 3 months-old Igf1rfl/fl normal/control transgenic mice were generated by deep sequencing using Illumina GAIIx. ------------------------------------------- Submitter states "we use data on the absolute transcription levels (FPKM) of same IGF system genes on the adult "normal" mouse lung to compare them with those reported in the human adult lung (expressed in both as FPKM) (http://www.proteinatlas.org/)".

Publication Title

Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE13487
Antitumor efficacy of RAF inhibitor GDC-0879 involving BRAFV600E mutational status and ERK/MAPK pathway suppression
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Unsupervised hierarchical clustering revealed a strong similarity in gene modulation resulting from either compound treatment or BRAF ablation mediated by RNA interference relative to DMSO-treated control samples .

Publication Title

Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32872
Extrinsic and Intrinsic Regulation of DOR/TRP53INP2 Expression in Mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The objective is to relate changes in expression of DOR/TRP53INP2, a factor involved in thyroid hormone action and autophagy, to body composition in mice fed a fat (FD) or high fat diet (HFD) for 8 days and in a genetically obese mouse model.

Publication Title

Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE14378
Expression data from pulmonary metastases of clear-cell renal cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The understanding of metastatic spread is limited and molecular mechanisms causing particular characteristics of metastasis, like varying dormancy periods of Mets originating from the same primary tumor entity or the differing number of Mets in patients with the same primary tumor, are largely unknown. Knowing the molecular fundamentals of these phenomena would support the prognosis of patients outcome and facilitate the decision for an appropriate therapy regime.

Publication Title

Gene signatures of pulmonary metastases of renal cell carcinoma reflect the disease-free interval and the number of metastases per patient.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE12790
Gene expression profiling of human breast cancers and cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12777
Gene expression profiling of 51 human breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Basal gene expression levels were determined by global gene expression profiling of breast cancer cell lines.

Publication Title

In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12763
Gene expression profiling of 30 human breast cancers
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to profile 30 human primary breast tumors and determine global gene expression patterns and molecular subtypes

Publication Title

In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12764
Gene expression changes upon expression of activated versions of MEK1 and HRAS in MCF10A cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MCF10A cells were then transfected with MEK1(S217S221), HRAS(G12V), and null control vectors

Publication Title

In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73351
The Arabidopsis thaliana map65-3 and ugt76b1 mutant transcriptomes upon the compatible interaction with Hyaloperonospora arabidopsidis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in map65-3 and ugt76b1 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa)

Publication Title

The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE11959
Anti-IGF-IR antibody h10H5 induces a unique transcriptional profile in SK-N-AS human neuroblastoma xenograft tumor
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The insulin-like growth factor (IGF) system consists of two ligands (IGF-I and IGF-II), which both signal through type I IGF receptor (IGF-IR) to stimulate proliferation and inhibit apoptosis, with activity contributing to malignant growth of many types of human cancers. We have developed a humanized, affinity-matured anti-human IGF-IR monoclonal antibody (h10H5), which binds with high affinity and specificity to the extracellular domain. h10H5 inhibits IGF-IR-mediated signaling by blocking IGF-I and IGF-IIbinding and by inducing cell surface receptor down-regulation via internalization and degradation. In vitro, h10H5 exhibits anti-proliferative effects on cancer cell lines. In vivo, h10H5 demonstrates single-agent anti-tumor efficacy in human SK-N-AS neuroblastoma and SW527 breast cancer xenograft models, and even greater efficacy in combination with the chemotherapeutic agent Docetaxel or an anti-VEGF antibody. Anti-tumor activity of h10H5 is associated with decreased AKT activation and glucose uptake, and a 316-gene transcription profile with significant changes involving DNA metabolic and cell cycle machineries. These data support the clinical testing of h10H5 as a biotherapeutic for IGF-IR-dependent human tumors.

Publication Title

Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact