Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify 3 main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons spatially confined to the cortical white matter. These MEIS2 expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. Overall design: Single cell transcriptomics of cortical interneurons FACS sorted according to GFP-Htr3a+. Acquired from mouse brains of 3 different developmental ages: E18, P2, P5
Transcriptomic and anatomic parcellation of 5-HT<sub>3A</sub>R expressing cortical interneuron subtypes revealed by single-cell RNA sequencing.
Subject
View SamplesPBMC from house dust mite (HDM) sensitized atopics were cultured in the presence or absence of HDM extract for 24 hours.
Distinguishing benign from pathologic TH2 immunity in atopic children.
No sample metadata fields
View SamplesAnalysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesAnalysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesAging is a key factor in Alzheimer''s disease, but it''s correlation with the pathology and pathological factors like amyloid-beta remains unclear In our study we aimed to provide an extensive characterisation of age-related changes in the gene expression profile of APP23 mice and controls and correlate these changes to pathological and symptomatic features of the model We found a clear biphasic expression profile with a developmental and aging phase. The second phase, particularly, displays aging features and similarties with the progression of Alzheimer pathology in human patients Processes involved in microglial activation, lysosomal processing, neuronal differantion and cytoskeletal regulation appear key factors in this stage. Interestingly, the changes in the gene expression profile of APP23 mice also seem to occur in control animals, but at a later age. The changes appear accelerated and/or exacerbated in APP23 mice. Overall design: mRNA profiles of APP23 mice and wild-type control littermates aged 1.5, 6, 18 or 24 months. For all the age groups, samples of 3 mice of each genotype were analyzed
Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease.
Age, Specimen part, Subject
View SamplesPurpose: Identify zebrafish microglia transcriptome in the healthy and neurodegenerative brain. Methods: RNA sequencing was performed on FACS-sorted microglia (3x), other brain cells (3x) and activated microglia (4x). Microglia activation was induced using nitroreductase-mediated cell ablation. 10-20 million reads per sample were obtained. Reads were mapped to zebrafish genome GRC10. Results: We identified the zebrafish microglia transcriptome, which shows overlap with previously identified mouse microglia transcriptomes. Transcriptomes obtained 24h and 48h after treatment appeared highly similar. Therefore, these datasets were pooled. Additionally, we identified an acute proliferative response of microglia to induced neuronal cell death. Overall design: Zebrafish microglia transcriptomes of homeostatic microglia (triplicate), other brain cells (triplicate), activated microglia 24h (duplo), activated microglia 48h (duplo). In data analysis all activated microglia samples were pooled.
Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish.
No sample metadata fields
View SamplesPBMC from house dust mite (HDM) sensitized atopics with or without asthma (or nonallergic controls) were cultured in the presence or absence of HDM extract for 24 hours.
Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses.
Specimen part, Disease stage, Subject
View SamplesBackground: A subset of infants are hyper-susceptible to severe/acute viral bronchiolitis (AVB), for reasons unknown. Purpose: To characterise the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airways tissues. Methods: PBMC and nasal mucosal scrapings (NMS) were obtained from Infants (<18mths) and children (1.5-5yrs) during AVB and post-convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data utilised a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis employing personalised N-of-1-pathways methodology. Results: Group-level analyses demonstrated that infant PBMC responses were dominated by monocyte-associated hyper-upregulated type I interferon signalling/pro-inflammatory pathways (drivers: TNF, IL6, TREM1, IL1B), versus a combination of inflammation (PTGER2, IL6) plus growth/repair/remodelling pathways (ERBB2, TGFB1, AREG, HGF) coupled with Th2 and NK-cell signalling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by interferon types I-III, but the magnitude of upregulation was higher in infants (range 6-48-fold) than children (5-17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and NK cell networks in children, and additionally demonstrated covert AVB response sub-phenotypes that were independent of chronological age. Conclusions: Dysregulated expression of interferon-dependent pathways following respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects appear to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence. Overall design: The study design consisted of PBMC from infants (<18months, n=15 pairs) and pre-school children (2-5yrs, n=16 pairs) sampled during severe acute viral bronchiolitis (acute visit = AV) and following recovery during convalescence (convalescent visit = CV). RNA-Seq profiles were generated by sequencing llumina HiSeq2500, 50bp single-end reads, v4 chemistry. Samples were sequenced across two lanes and collapsed prior analysis.
Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral Bronchiolitis.
Subject
View SamplesBackground: A subset of infants are hyper-susceptible to severe/acute viral bronchiolitis (AVB), for reasons unknown. Purpose: To characterise the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airways tissues. Methods: PBMC and nasal mucosal scrapings (NMS) were obtained from Infants (<18mths) and children (1.5-5yrs) during AVB and post-convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data utilised a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis employing personalised N-of-1-pathways methodology. Results: Group-level analyses demonstrated that infant PBMC responses were dominated by monocyte-associated hyper-upregulated type I interferon signalling/pro-inflammatory pathways (drivers: TNF, IL6, TREM1, IL1B), versus a combination of inflammation (PTGER2, IL6) plus growth/repair/remodelling pathways (ERBB2, TGFB1, AREG, HGF) coupled with Th2 and NK-cell signalling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by interferon types I-III, but the magnitude of upregulation was higher in infants (range 6-48-fold) than children (5-17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and NK cell networks in children, and additionally demonstrated covert AVB response sub-phenotypes that were independent of chronological age. Conclusions: Dysregulated expression of interferon-dependent pathways following respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects appear to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence. Overall design: The study design consisted of PBMC from infants (<18months, n=15 pairs) and pre-school children (2-5yrs, n=16 pairs) sampled during severe acute viral bronchiolitis (acute visit = AV) and following recovery during convalescence (convalescent visit = CV). RNA-Seq profiles were generated by sequencing llumina HiSeq2500, 50bp single-end reads, v4 chemistry. Samples were sequenced across two lanes and collapsed prior analysis.
Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral Bronchiolitis.
Subject
View SamplesBackground: Tissue macrophages contribute to development and protection, both requiring appropriately timed and located source(s) of factors controlling growth, cell differentiation and migration. Goal: To understand the role of microglia (tissue macrophages of the central nervous system), in promoting neurodevelopment and controlling neuroinflammation. Summary of findings: We show that microglia fulfill both these roles. In contrast to adult cells, neonatal microglia show a unique neurogenic phenotype with stem cell-like potential. Neonatal microglia are protective against neuroinflammation, and their transplantation ameliorates experimental autoimmune encephalomyelitis. A CD11c+ microglial subset predominates in primary myelinating areas of the developing brain and expresses genes for neuronal and glial survival, migration and differentiation. CD11c+ microglia are also found in clusters of repopulating microglia after experimental ablation and in neuroinflammation in adult mice, but despite some similarities, they do not recapitulate neurogenic neonatal microglia characteristics. Conclusions: We therefore identify a unique phenotype of neonatal microglia that deliver signals necessary for neurogenesis and myelination and suppress neuroinflammation. Overall design: The overall design was to compare transcriptomes of subsets of microglia isolated from neonatal mice, healthy adults, and adult mice with a neuroinflammatory disease (Experimental autoimmune encephalomyelitis, EAE), and to compare anti-inflammatory function of adult and neonatal microglia. Microglia were isolated by cell-sorting based on surface phenotype, and RNAseq data was analyzed using WGCNA, GO and DAVID approaches. Expression of selected genes and pathways was confirmed by histology and flow cytometry. Functional analysis involved transfer of isolated microglia to the central nervous system of animals with EAE and evaluation of outcome. EAE = Experimental autoimmune encephalomyelitis
A novel microglial subset plays a key role in myelinogenesis in developing brain.
Subject
View Samples