PBMC from house dust mite (HDM) sensitized atopics were cultured in the presence or absence of HDM extract for 24 hours.
Distinguishing benign from pathologic TH2 immunity in atopic children.
No sample metadata fields
View SamplesAnalysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesAnalysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesPBMC from house dust mite (HDM) sensitized atopics with or without asthma (or nonallergic controls) were cultured in the presence or absence of HDM extract for 24 hours.
Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses.
Specimen part, Disease stage, Subject
View SamplesBackground: A subset of infants are hyper-susceptible to severe/acute viral bronchiolitis (AVB), for reasons unknown. Purpose: To characterise the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airways tissues. Methods: PBMC and nasal mucosal scrapings (NMS) were obtained from Infants (<18mths) and children (1.5-5yrs) during AVB and post-convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data utilised a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis employing personalised N-of-1-pathways methodology. Results: Group-level analyses demonstrated that infant PBMC responses were dominated by monocyte-associated hyper-upregulated type I interferon signalling/pro-inflammatory pathways (drivers: TNF, IL6, TREM1, IL1B), versus a combination of inflammation (PTGER2, IL6) plus growth/repair/remodelling pathways (ERBB2, TGFB1, AREG, HGF) coupled with Th2 and NK-cell signalling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by interferon types I-III, but the magnitude of upregulation was higher in infants (range 6-48-fold) than children (5-17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and NK cell networks in children, and additionally demonstrated covert AVB response sub-phenotypes that were independent of chronological age. Conclusions: Dysregulated expression of interferon-dependent pathways following respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects appear to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence. Overall design: The study design consisted of PBMC from infants (<18months, n=15 pairs) and pre-school children (2-5yrs, n=16 pairs) sampled during severe acute viral bronchiolitis (acute visit = AV) and following recovery during convalescence (convalescent visit = CV). RNA-Seq profiles were generated by sequencing llumina HiSeq2500, 50bp single-end reads, v4 chemistry. Samples were sequenced across two lanes and collapsed prior analysis.
Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral Bronchiolitis.
Subject
View SamplesBackground: A subset of infants are hyper-susceptible to severe/acute viral bronchiolitis (AVB), for reasons unknown. Purpose: To characterise the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airways tissues. Methods: PBMC and nasal mucosal scrapings (NMS) were obtained from Infants (<18mths) and children (1.5-5yrs) during AVB and post-convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data utilised a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis employing personalised N-of-1-pathways methodology. Results: Group-level analyses demonstrated that infant PBMC responses were dominated by monocyte-associated hyper-upregulated type I interferon signalling/pro-inflammatory pathways (drivers: TNF, IL6, TREM1, IL1B), versus a combination of inflammation (PTGER2, IL6) plus growth/repair/remodelling pathways (ERBB2, TGFB1, AREG, HGF) coupled with Th2 and NK-cell signalling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by interferon types I-III, but the magnitude of upregulation was higher in infants (range 6-48-fold) than children (5-17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and NK cell networks in children, and additionally demonstrated covert AVB response sub-phenotypes that were independent of chronological age. Conclusions: Dysregulated expression of interferon-dependent pathways following respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects appear to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence. Overall design: The study design consisted of PBMC from infants (<18months, n=15 pairs) and pre-school children (2-5yrs, n=16 pairs) sampled during severe acute viral bronchiolitis (acute visit = AV) and following recovery during convalescence (convalescent visit = CV). RNA-Seq profiles were generated by sequencing llumina HiSeq2500, 50bp single-end reads, v4 chemistry. Samples were sequenced across two lanes and collapsed prior analysis.
Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral Bronchiolitis.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Myb permits multilineage airway epithelial cell differentiation.
Sex, Specimen part
View SamplesThe epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63 and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation.
Myb permits multilineage airway epithelial cell differentiation.
Sex, Specimen part
View SamplesOligonucleotide microarrays were used to establish a profile for gene expression in wild-type airway epithelial cells after paramyxoviral infection.
Airway epithelial versus immune cell Stat1 function for innate defense against respiratory viral infection.
Sex, Specimen part
View SamplesThis experiment analyzes the changes in expression of twelve days old Arabidopsis roots at ten hours post inoculation upon cyst nematode H. schachtii infection.
Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes.
Age, Specimen part
View Samples