Our study in zebrafish is the first to use an animal model to understand the biology of the developmental disorder Roberts Syndrome (RBS). RBS is caused by mutations in the ESCO2 gene.
A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.
Age, Specimen part
View SamplesWe report that increased nutrient availability increases breeding success and egg production. RNA-seq analysis revealed that parental diet altered the expression of metabolic genes in the unfertilized eggs. Offspring from the differentially fed parents showed altered survival and energy expenditure as adults. Overall design: RNA from unfertilized eggs after two parental diets.
Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish.
No sample metadata fields
View SamplesSexual differentiation in zebrafish is complex. Although zebrafish sex determination is primarily genetic, hormonal and environmental factors can influence sexual development. 17 alpha-methyltestosterone (MT), a synthetic androgen, induces female-to-male sex reversal in zebrafish. MT treatment is routinely used in aquaculture for production of all-male populations. However, the molecular mechanisms underlying 17 alpha-methyltestosterone induced gonad masculinisation in fish are poorly understood.In this study, we analysed gonad transcriptomes of zebrafish treated with 17 alpha-methyltestosterone during gonadal development (from 20 dpf to 40 dpf and 60 dpf) and compared them with testis and ovary transcriptomes of untreated zebrafish. These data improve our understanding of the role of androgens in teleost sex differentiation.
Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.
No sample metadata fields
View SamplesMethods: Triplicate RNA samples from morphologically stage-matched embryos were sequenced to compare expression profiles over time. Strand-specific libraries were prepared using the TruSeq stranded total RNA-ribozero kit (Illumina) and 100-bp paired-end sequencing was performed to depth of 10 million reads per library on an Illumina HiSeq 2000. Methods: On average, 19 million 100 bp paired-end reads per library were generated. These were then adapter and quality trimmed using cutadapt and SolexaQA. Each sequencing data set was independently mapped to the zebrafish genome with a bowtie2 index generated from Danio_rerio.Zv9.70 (Ensembl) downloaded from Illumina's iGenomes collection. Zebrafish genome danRer7was used to provide known transcript annotations from Ensembl using TopHat2 (version 2.0.9) with the following options: “tophat2 --GTF genes.gtf --library-type fr-firststrand -p 24 --mate-inner-dist -8 --mate-std-dev 6 zv9” (on average, 75.38% reads mapped uniquely to the genome). Transcriptomes were assembled with Cufflinks (version 2.2.0) using options: 'cufflinks -p 32 --GTF genes.gtf' and differential expression analysis between control and knockdown embryos was performed using Cuffdiff. A FDR corrected p-value of 0.05 was applied as the cut off to identify differentially regulated transcripts Results: We could show that MO assisted depletion of Rad21 and CTCF affected the transcriptional profiles of embryos in different ways. Overall design: mRNA profiles of (2.5, 3.3, 4.5, 5.3, 10 hpf) wild type (WT) and morpholino depleted Rad21 MO (Rad21) and CTCF MO (CTCF) embryos were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.
Cohesin facilitates zygotic genome activation in zebrafish.
No sample metadata fields
View SamplesRad21 is a subunit of cohesin. The main function of cohesin is to hold replicated chromosomes together until cells divide, but it also plays a role in gene expression. To find out which genes might be regulated by cohesin, a study was conducted to look for global changes in gene expression in zebrafish embryos lacking cohesin component Rad21.
Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Cell line, Treatment
View SamplesTo further understand the differences occurring in MCF10A cells as they polarize and differentiate in the Transwell model, we performed gene expression profiling with Affymetrix Human Genome U133 Plus 2.0 Arrays. Four experimental time points, were sampled: conventional cultures of MCF10A cells grown on plastic (Monolayer) and MCF10A cells plated on Transwells sampled at three TEER values, 200-300 cm2 (Base), 1400-1600 cm2 (Midpoint), and 3000-3200 cm2 (Plateau).
In vitro multipotent differentiation and barrier function of a human mammary epithelium.
No sample metadata fields
View SamplesWe compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Treatment
View SamplesWe initiated a study to investigate the transcriptional profiles associated with cell states of the stomatal lineage. A stem-cell like precursor of stomata, a meristemoid. reiterates asymmetric divisions and renews itself before differentiating into guard cells. The transient and asynchronous nature of the meristemoid has made it difficult to study its molecular characteristics. Through combinatorial use of genetic resources that either arrest or constitutively drive stomatal cell-state progressions due to loss- or gain-of-function mutations in the key transcription factor genes, SPEECHLESS, MUTE, and SCRM, we obtained seedlings highly enriched in pavement cells, meristemoids, or stomata. Here we present transcriptome and genome-wide trends in gene regulation associated with each cell state and identify molecular signatures associated with meristemoids.
Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis.
Age, Specimen part
View SamplesWe compared TET triple knockdown cells to control cells treated with non-targeting siRNAs to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Cell line, Treatment
View Samples