Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However when removed from their embryonic niche PGCs undergo reversion to generate pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) involves variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. In the current study we show that reverting PGCs to EGCs involves ICC methylation erasure, which remain stably hypomethylated at Snrpn, Igf2r and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes almost complete de novo remethylation. Using the same approach for PGCs differentiated in vitro from ESCs we show that the Snrpn ICC is erased however the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC is abnormally hypermethylated in ESCs, ICC methylation is not erased with differentiation into PGCs. This highlights the importance of not only launching germline differentiation with correctly methylated ESC lines but also the need to better stabilize the hypomethylated state in the in vitro derivatives following ICC erasure. Overall design: RNA seq of E9.5 PGCs, iPGCs, PGCLCs and EGCs using small cell numbers from start. N=2 biological replicates in 2 technical sequencing replicates.
PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation.
No sample metadata fields
View SamplesTransition from primed to naive pluripotency is associated with dynamic changes in transposable element (TE) expression and demethylation of imprinting control regions (ICRs). In mouse, ICR methylation and TE expression are each regulated by TRIM28; however, the role of TRIM28 in humans is less clear. Here, we show that a null mutation in TRIM28 causes significant alterations in TE expression in both the naive and primed states of human pluripotency, and phenotypically this has limited effects on self-renewal, instead causing a loss of germline competency. Furthermore, we discovered that TRIM28 regulates paternal ICR methylation and chromatin accessibility in the primed state, with no effects on maternal ICRs. Taken together, our study shows that abnormal TE expression is tolerated by self-renewing human pluripotent cells, whereas germline competency is not. Overall design: Examination of transcription, DNA methylation and chromatin accessibility of human ES cells for wild type and Trim28 knockout.
TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency.
No sample metadata fields
View SamplesCancer cells express different sets of receptor type tyrosine kinases. These receptor kinases may be activated through autocrine or paracrine mechanisms. Fibroblasts may modify the biologic properties of surrounding cancer cells through paracrine mechansms.
The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma.
Specimen part, Cell line
View SamplesEndometrial cancer is one of the most common gynecologic malignancies, and patients with high grade disease, especially serous papillary subtype (SPEC) are often related to the poor outcomes. Recent genome-wide analyses have revealed that SPEC exhibits gene expression profiles that are distinct from the endometrioid histologic subtype; therefore, it is important to identify the SPEC driver genes or pathways responsible for the inherently aggressive phenotypes and to develop SPEC-specific therapies to target these driver genes or pathways.
STAT1 drives tumor progression in serous papillary endometrial cancer.
Specimen part, Cell line
View SamplesGrowing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed polyA-tailed RNA profiles including transcribing RNAs in gastrocnemius skeletal muscle ( from 3 control and 3 Sfpq-/- P35 male mice) using Ion-proton.
Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.
Sex, Specimen part, Cell line, Subject
View SamplesGrowing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed rRNA-depleted RNA profiles including transcribing RNAs in primary myoblasts obtained from skeletal muscles of 1-month-old SfpqSM-KO (n=1) and control (n=1) mice under differentiated condition using Ion-proton.
Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.
Subject
View SamplesSkeletal muscle mass is an important determinant of whole-body glucose disposal. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3'-phosphoinositide–dependent kinase 1 (PDK1), a key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of exercise load–induced muscle hypertrophy.
Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load.
Sex, Specimen part
View SamplesIn this dataset, we included expression data obtained from 30 resected human PDAC tumors, to examine what genes are differentially expressed in different cohorts that might lead to various outcomes
Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer.
Specimen part
View SamplesDifferentiation of naive CD4 T cells into type 2 helper (Th2) cells is accompanied by chromatin remodeling and increased expression of a set of Th2-specific genes including those encoding Th2 cytokines. IL-4-mediated STAT6 activation induces high levels of transcription of GATA3, a master regulator of Th2 cell differentiation, and enforced expression of GATA3 induces Th2 cytokine expression. However, it remains unclear whether the expression of other Th2-specific genes is induced directly by GATA3. A genome-wide unbiased ChIP-seq analysis revealed that GATA3 bound to 1,279 genes selectively in Th2 cells, and 101 genes in both Th1 and Th2 cells. Simultaneously, we identified 26 highly Th2-specific STAT6-dependent inducible genes by a DNA microarray analysis-based three-step selection processes, and among them 17 genes showed GATA3 binding. We assessed dependency on GATA3 for the transcription of these 26 Th2-specific genes, and 10 genes showed increased transcription in a GATA3-dependent manner while 16 genes showed no significant responses. The transcription of the 16 GATA3-nonresponding genes was clearly increased by the introduction of an active form of STAT6, STAT6VT. Therefore, although GATA3 has been recognized as a master regulator of Th2 cell differentiation, many Th2-specific genes are not regulated by GATA3 itself but in collaboration with STAT6.
Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3.
Specimen part
View SamplesAppropriate regulation of hematopoietic stem cell (HSC) self-renewal is critical for the maintenance of life long hematopoiesis. However, long-term repeated cell divisions induce the accumulation of DNA damage, especially at telomere, significantly compromises HSC function. Therefore, shelterin elements Pot1a is required to prevent DNA damage response at telomeres in order to maintain their function.
The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age.
Sex, Specimen part
View Samples